Part Number Hot Search : 
LVC1G86 BFR35A XC2VP100 P45AB LCB120 MLL4741A ICX205 BSP42
Product Description
Full Text Search
 

To Download STM32L151C6 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. february 2013 doc id 17659 rev 8 1/121 1 stm32l15xx6/8/b ultra-low-power 32-bit mcu arm-based cortex-m3, 128kb flash, 16kb sram, 4kb eeprom, lcd, usb, adc, dac datasheet ? production data features ultra-low-power platform ? 1.65 v to 3.6 v power supply ? -40c to 85c/105c temperature range ? 0.3 a standby mode (3 wakeup pins) ? 0.9 a standby mode + rtc ? 0.57 a stop mode (16 wakeup lines) ? 1.2 a stop mode + rtc ? 9 a low-power run mode ? 214 a/mhz run mode ? 10 na ultra-low i/o leakage ? < 8 s wakeup time core: arm 32-bit cortex ? -m3 cpu ? from 32 khz up to 32 mhz max ? 33.3 dmips peak (dhrystone 2.1) ? memory protection unit reset and supply management ? ultra-safe, low-power bor (brownout reset) with 5 selectable thresholds ? ultra-low-power por/pdr ? programmable voltage detector (pvd) clock sources ? 1 to 24 mhz crystal oscillator ? 32 khz oscillator for rtc with calibration ? high speed internal 16 mhz factory- trimmed rc (+/- 1%) ? internal low power 37 khz rc ? internal multispeed low power 65 khz to 4.2 mhz ? pll for cpu clock and usb (48 mhz) pre-programmed bootloader ? usart supported development support ? serial wire debug supported ? jtag and trace supported up to 83 fast i/os (73 i/os 5v tolerant), all mappable on 16 external interrupt vectors memories ? up to 128 kb flash with ecc ? up to 16 kb ram ? up to 4 kb of true eeprom with ecc ? 80 byte backup register lcd driver for up to 8x40 segments ? support contrast adjustment ? support blinking mode ? step-up converter on board rich analog peripherals (down to 1.8 v) ? 12-bit adc 1 msps up to 24 channels ? 12-bit dac 2 channels with output buffers ? 2x ultra-low-power-comparators (window mode and wake up capability) dma controller 7x channels 8x peripherals communication interface ? 1x usb 2.0 (internal 48 mhz pll) ? 3x usart (iso 7816, irda) ? 2x spi 16 mbits/s ? 2x i2c (smbus/pmbus) 10x timers: 6x 16-bit with up to 4 ic/oc/pwm channels, 2x 16-bit basic timer, 2x watchdog timers (independent and window) up to 20 capacitive sensing channels supporting touchkey, li near and rotary touch sensors crc calculation unit, 96-bit unique id table 1. device summary reference part number stm32l151xx stm32l151cb, stm32l151c8, STM32L151C6, stm32l151rb, stm32l151r8, stm32l151r6, stm32l151vb, stm32l151v8 stm32l152xx stm32l152cb, stm32l152c8, stm32l152c6, stm32l152rb, stm32l152r8, stm32l152r6, stm32l152vb, stm32l152v8 lqfp100 14 14 mm lqfp64 10 10 mm lqfp48 7 7 mm bga100 7 7 mm bga64 5 5 mm ufqfpn48 7 7 mm www.st.com free datasheet http:///
contents stm32l151x6/8/b, stm32l152x6/8/b 2/121 doc id 17659 rev 8 contents 1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 common system strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 arm? cortex?-m3 core with mpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.2 power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.3 voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.4 boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 low power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 22 3.6 gpios (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.7 memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.8 dma (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.9 lcd (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.10 adc (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10.1 temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10.2 internal voltage reference (v refint ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.11 dac (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.12 ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 25 3.13 routing interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.14 touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.15 timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b contents doc id 17659 rev 8 3/121 3.15.1 general-purpose timers (tim2, tim3, tim4, tim9, tim10 and tim11) 28 3.15.2 basic timers (tim6 and tim7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.15.3 systick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.15.4 independent watchdog (iwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.15.5 window watchdog (wwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.16 communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.16.1 i2c bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.16.2 universal synchronous/asynchronous receiver transmitter (usart) . . 29 3.16.3 serial peripheral interface (spi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.16.4 universal serial bus (usb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.17 crc (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 30 3.18 development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 electrical characteristi cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1 parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.1 minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.2 typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.3 typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.4 loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.5 pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.6 power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.7 current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3.1 general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3.2 embedded reset and power control block characteristics . . . . . . . . . . . 51 6.3.3 embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.4 supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.5 external clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.6 internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.7 pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.8 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.9 emc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 free datasheet http:///
contents stm32l151x6/8/b, stm32l152x6/8/b 4/121 doc id 17659 rev 8 6.3.10 absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 77 6.3.11 i/o current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.12 i/o port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.13 nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.14 tim timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.15 communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.16 12-bit adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.17 dac electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.18 temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.19 comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3.20 lcd controller (stm32l152xx only) . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7 package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.1 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.2 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.2.1 reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b list of tables doc id 17659 rev 8 5/121 list of tables table 1. device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 table 2. ultra-low-power stm32l15xxx device features and peripheral counts . . . . . . . . . . . . . . . 10 table 3. functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 14 table 4. cpu frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 15 table 5. functionalities depending on the working mode (from run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 table 6. temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 table 7. internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 8. timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 table 9. stm32l15xxx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 table 10. alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 table 11. voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 table 12. current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 table 13. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 table 14. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 table 15. embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 51 table 16. embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 table 17. current consumption in run mode, code with data processing running from flash. . . . . . 54 table 18. current consumption in run mode, code wit h data processing running from ram . . . . . . 55 table 19. current consumption in sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 20. current consumption in low power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 21. current consumption in low power sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 table 22. typical and maximum current consumptions in stop mode . . . . . . . . . . . . . . . . . . . . . . . . 59 table 23. typical and maximum current consumptions in standby mode . . . . . . . . . . . . . . . . . . . . . 61 table 24. typical and maximum timings in low power modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 table 25. peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 table 26. high-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 table 27. low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 table 28. hse 1-24 mhz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 table 29. lse oscillator characteristics (f lse = 32.768 khz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 table 30. hsi oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 table 31. lsi oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 table 32. msi oscillator ch aracteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 table 33. pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 table 34. ram and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 table 35. flash memory and data eeprom c haracteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 table 36. flash memory, data eeprom end urance and data retention . . . . . . . . . . . . . . . . . . . . . . 75 table 37. ems characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 table 38. emi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 table 39. esd absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 40. electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 41. i/o current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 table 42. i/o static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 43. output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 table 44. i/o ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 table 45. nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 table 46. timx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 table 47. i 2 c characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 free datasheet http:///
list of tables stm32l151x6/8/b, stm32l152x6/8/b 6/121 doc id 17659 rev 8 table 48. scl frequency (f pclk1 = 32 mhz, v dd = 3.3 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 table 49. spi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 table 50. usb startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 table 51. usb dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 table 52. usb: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 table 53. adc clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 table 54. adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 table 55. adc accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 table 56. r ain max for f adc = 16 mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 table 57. dac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 table 58. temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 table 59. comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 table 60. comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 table 61. lcd controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 table 62. lqpf100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 104 table 63. lqfp64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data. . . . . . . . . . 106 table 64. lqfp48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 108 table 65. ufqfpn48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . 110 table 66. ufbga100 - 7 x 7 x 0.6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . 111 table 67. tfbga64 - 8.0x8.0x1.2 mm, 0.5 mm pitch, pa ckage mechanical data . . . . . . . . . . . . . . 112 table 68. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 table 69. ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b list of figures doc id 17659 rev 8 7/121 list of figures figure 1. ultra-low-power stm32l15xxx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 2. clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 3. stm32l15xvx ufbga100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 4. stm32l15xvx lqfp100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 figure 5. stm32l15xrx tfbga64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 figure 6. stm32l15xrx lqfp64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 figure 7. stm32l15xcx lqfp48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 figure 8. stm32l15xcx ufqfpn48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 figure 9. memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 figure 10. pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 figure 11. pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 figure 12. power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 figure 13. current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 figure 14. low-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 figure 15. high-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 figure 16. hse oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 figure 17. typical application with a 32.768 khz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 figure 18. i/o ac characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 figure 19. recommended nrst pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 figure 20. i 2 c bus ac waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 figure 21. spi timing diagram - slave mode and cpha = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 figure 22. spi timing diagram - slave mode and cpha = 1 (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 figure 23. spi timing diagram - master mode (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 figure 24. usb timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 figure 25. adc accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 figure 26. typical connection diagram using the adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 figure 27. maximum dynamic current consumption on v ref+ supply pin during adc conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 figure 28. power supply and reference decoupling (v ref+ not connected to v dda ). . . . . . . . . . . . . . 95 figure 29. power supply and reference decoupling (v ref+ connected to v dda ). . . . . . . . . . . . . . . . . 95 figure 30. 12-bit buffered /non-buffered dac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 figure 31. lqfp100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 103 figure 32. recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 figure 33. lqfp64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 105 figure 34. recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 figure 35. lqfp48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 107 figure 36. recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 figure 37. ufqfpn48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 figure 38. recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 figure 39. ufbga100 - 7 x 7 x 0.6 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . 111 figure 40. tfbga64 - 8.0x8.0x1.2 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . 112 figure 41. recommended pcb design rules for pads (0.5 mm pitch bga) . . . . . . . . . . . . . . . . . . . 113 figure 42. thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 free datasheet http:///
introduction stm32l151x6/8/b, stm32l152x6/8/b 8/121 doc id 17659 rev 8 1 introduction this datasheet provides the ordering information and mechanical device characteristics of the stm32l151xx and stm32l152xx ultra-low-power arm cortex?-based microcontrollers product line. the ultra-low-power stm32l15xxx family includes devices in 3 different package types: from 48 pins to 100 pins. depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. these features make the ultra-low-power stm 32l15xxx microcontroller family suitable for a wide range of applications: medical and handheld equipment application control and user interface pc peripherals, gaming, gps and sport equipment alarm systems, wired and wirel ess sensors, video intercom utility metering this stm32l151xx and stm32l152xx datasheet should be read in conjunction with the stm32l1xxxx reference manual (rm0038). the document "getting started with stm32l1xxx hardware development" an3216 gives a hardware implementation overview. the both documents are available from the stmicroelectronics website www.st.com. for information on the cortex?-m3 core please refer to the cortex?-m3 technical reference manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337g. figure 1 shows the general block diagram of the device family. free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b description doc id 17659 rev 8 9/121 2 description the ultra-low-power stm32l15xxx incorporates the connectivity power of the universal serial bus (usb) with the high-performance arm cortex ? -m3 32-bit risc core operating at a 32 mhz frequency, a memory protection unit (mpu), high-speed embedded memories (flash memory up to 128 kbytes and ram up to 16 kbytes) and an extensive range of enhanced i/os and peripheral s connected to two apb buses. all devices offer a 12-bit adc, 2 dacs and 2 ultra-low-power comparators, six general- purpose 16-bit timers and two basic timers, which can be used as time bases. moreover, the stm32l15xxx devices contain standard and advanced communication interfaces: up to two i 2 cs and spis, three usarts and a usb. the stm32l15xxx devices offer up to 20 capacitive sensing channels to simply add touch sensing functionality to any application. they also include a real-time clock and a set of backup registers that remain powered in standby mode. finally, the integrated lcd controller has a built-in lcd voltage generator that allows you to drive up to 8 multiplexed lcds with contrast independent of the supply voltage. the ultra-low-power stm32l15xxx operates from a 1.8 to 3.6 v power supply (down to 1.65 v at power down) with bor and from a 1.65 to 3.6 v power supply without bor option. it is available in the -40 to +85 c temperature range, extended to 105c in low power dissipation state. a comprehensive set of power-saving modes allows the design of low- power applications. free datasheet http:///
description stm32l151x6/8/b, stm32l152x6/8/b 10/121 doc id 17659 rev 8 2.1 device overview . table 2. ultra-low-power stm32l15xxx device features and peripheral counts peripheral stm32l15xcx stm32l15xrx stm32l15xvx flash (kbytes) 32 64 128 32 64 128 64 128 data eeprom (kbytes) 4 ram (kbytes) 10 10 16 10 10 16 10 16 timers general- purpose 6 basic 2 communication interfaces spi 2 i 2 c 2 usart 3 usb 1 gpios 37 51 83 12-bit synchronized adc number of channels 1 16 channels 1 20 channels 1 24 channels 12-bit dac number of channels 2 2 lcd (stm32l152xx only) com x seg 4x16 4x32 8x28 4x44 8x40 comparator 2 capacitive sensi ng channels 13 20 max. cpu frequency 32 mhz operating voltage 1.8 v to 3.6 v (down to 1.65 v at power-down) with bor option 1.65 v to 3.6 v without bor option operating temperatures ambient temperatures: ?40 to +85 c junction temperature: ?40 to + 105 c packages lqfp48, ufqfpn48 lqfp64, bga64 lqfp100, bga100 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b description doc id 17659 rev 8 11/121 2.2 ultra-low-power device continuum the ultra-low-power stm32l151xx and stm32l152xx are fully pin-to-pin and software compatible. besides the full compatibility within th e family, the devices are part of stmicroelectronics microcontrollers ultra-low-power strategy which also includes stm8l101xx and stm8l15xx devices. th e stm8l and stm32l families allow a continuum of performance, peripherals, system architecture and features. they are all based on stmicroelectronics ultralow leakage process. note: the ultra-low-power stm3 2l and general-purpose stm32f xxxx families are pin-to-pin compatible. the stm8l15xxx devices are pin-to-pin compatible with the stm8l101xx devices. please refer to the stm32f and stm8l documentation for more information on these devices. 2.2.1 performance all families incorporate highly energy-efficien t cores with both harvar d architecture and pipelined execution: advanced stm8 core fo r stm8l families and arm cortex?-m3 core for stm32l family. in addition specific care for the design architecture has been taken to optimize the ma/dmips and ma/mhz ratios. this allows the ultra-low-power performance to range from 5 up to 33.3 dmips. 2.2.2 shared peripherals stm8l15xxx and stm32l15xxx share identical peripherals which ensure a very easy migration from one family to another: analog peripherals: adc, dac and comparators digital peripherals: rtc and some communication interfaces 2.2.3 common system strategy to offer flexibility and optimize performance, the stm8l15xx and st m32l15xx families use a common architecture: same power supply range from 1.65 v to 3.6 v, (1.65 v at power down only for stm8l15xx devices) architecture optimized to reach ultralow consumption both in low power modes and run mode fast startup strategy from low power modes flexible system clock ultrasafe reset: same reset strategy incl uding power-on reset, power-down reset, brownout reset and programmable voltage detector. 2.2.4 features st ultra-low-power continuum also lies in feature compatibility: more than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm memory density ranging from 4 to 384 kbytes free datasheet http:///
functional overview stm32l151x6/8/b, stm32l152x6/8/b 12/121 doc id 17659 rev 8 3 functional overview figure 1 shows the block diagrams. figure 1. ultra-low-power stm32l15xxx block diagram 1. af = alternate function on i/o port pin. ext. it wwdg 12-bit adc jtag &sw 24 a f jt d i jt ck/ s wclk jtms /s wdat njt r st jtdo nrst v dd =1. 65 v to 3. 6 v 83a f ah b2 us b_dp us b_dm mo s i,mis o, s ck, ns s wku p f ma x :32 mhz v ss s c l, sd a, smb u s ,p mb u s i2c 2 v ddref _adc * gp dma tim2 tim3 x t al o s c 1-24 mhz x t a l 32 khz osc_in osc_out os c32 _out os c32 _in pll & apb1 : f ma x =32mhz a hbp cl k hc l k clock management ap bp cl k as af as af volt. reg. v co r e po we r as a f tim4 b us matrix int erface rt c rc hs ibus db us pbus obl flash us b ram 512 b us art 1 us art 2 sp i2 7 c h annels sc l, s d a i2c 1 as af rx ,t x , ct s , rt s , us art 3 te mp s ens or v ss ref_ adc * ahb:f max =32 mhz 4channels 4channels 4channels fc lk iwdg @v dd supply monitoring @v dd a vdda / vss a @v dd a s m artc ard a s af rx ,t x , c t s, r t s, s m ar tc ar d as af rx ,tx, c t s, r t s, s m artca rd as a f ap b2 : f ma x =32 mhz nv ic spi 1 mosi ,mis o, sc k, ns s as af if @vd d a pv d power reset int ahb 2 aw u @v dd a rtc_out, rtc_ts,rtc_tamp system p a [15:0 ] p b [15:0 ] p c [15:0 ] pd[ 15:0] pe[1 5:0 ] lcd 8x4 0 (4x44 ) seg x com x if if if @v dd a dac_out1 as af mp u co m p 2 comp2 _in- /in+ co m p 1 tim6 tim7 m ti m9 ti m10 ti m11 2 channe ls 1 c h annel 1 channel general purpose timers 128 kb flash 4 kb data eeprom lcd step-up converter v lcd = 2.5 v to 3.6 v v lc d ba si c t ime rs rtc_afin vr ef o utpu t ai15687h cortex-m3 cpu trace controller etm ram 16 kb 12-bit dac1 12-bit dac2 gpioa gpiob gpioc gpiod gpioe traceck, traced0, traced1, traced2, traced3 rc ms rc ls standby interface backup interface usb 2.0 fs device bor/v refint power-up/ power-down backup register ph[2 :0 ] gpioh dac_out2 as af ahb/apb2 ahb/apb1 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b functional overview doc id 17659 rev 8 13/121 3.1 low power modes the ultra-low-power stm32l15xxx supports dynamic voltage scaling to optimize its power consumption in run mode. the voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system?s maximum operating frequency and the external voltage supply: in range 1 (v dd range limited to 2.0-3.6 v), the cpu runs at up to 32 mhz (refer to table 17 for consumption). in range 2 (full v dd range), the cpu runs at up to 16 mhz (refer to table 17 for consumption) in range 3 (full v dd range), the cpu runs at up to 4 mhz (generated only with the multispeed internal rc oscillato r clock source). refer to table 17 for consumption. seven low power modes are provided to achieve the best compromise between low power consumption, short startup time and available wakeup sources: sleep mode in sleep mode, only the cpu is stopped. all peripherals continue to operate and can wake up the cpu when an interrupt/event occurs. sleep mode power consumption: refer to ta b l e 1 9 . low power run mode this mode is achieved with the multispeed internal (msi) rc oscillator set to the minimum clock (65 khz), execution from sram or flash memory, and internal regulator in low power mode to minimize the regulator's operating current. in the low power run mode, the clock frequency and the number of enabled peripherals are both limited. low power run mode consumption: refer to table 20 . low power sleep mode this mode is achieved by entering the sleep mode with the internal voltage regulator in low power mode to minimize the regulator?s operating current. in the low power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 khz. when wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on. low power sleep mode consumption: refer to table 21 . stop mode with rtc stop mode achieves the lowest power consumption while retaining the ram and register contents and real time clock. all clocks in the v core domain are stopped, the pll, msi rc, hsi rc and hse cr ystal oscillators are disabled. the lse or lsi is still running. the voltage regulator is in the low power mode. the device can be woken up from stop mode by any of the exti line, in 8 s. the exti line source can be one of the 16 external lines. it can be the pvd output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the rtc alarm(s), the usb wakeup, the rtc tamper events, the rtc timestamp event or the rtc wakeup. stop mode without rtc stop mode achieves the lowest power consumption while retaining the ram and register contents. all clocks are stopped, the pll, msi rc, hsi and lsi rc, lse and hse crystal oscillators are di sabled. the voltage regulator is in th e low power mode. the device can be woken up from stop mode by any of the exti line, in 8 s. the exti line source can be one of the 16 external lines. it can be the pvd output, the free datasheet http:///
functional overview stm32l151x6/8/b, stm32l152x6/8/b 14/121 doc id 17659 rev 8 comparator 1 event or comparator 2 event (if internal reference voltage is on). it can also be wakened by the usb wakeup. stop mode consumption: refer to ta b l e 2 2 . standby mode with rtc standby mode is used to achieve the lowest power consumption and real time clock. the internal voltage regulator is switched off so that the entire v core domain is powered off. the pll, msi rc, hsi rc and hse crystal oscillators are also switched off. the lse or lsi is still running. after entering standby mode, the ram and register contents are lost except for registers in the standby circuitry (wakeup logic, iwdg, rtc, lsi, lse crystal 32k osc, rcc_csr). the device exits standby mode in 60 s when an external reset (nrst pin), an iwdg reset, a rising edge on one of the three wkup pins, rtc alarm (alarm a or alarm b), rtc tamper event, rtc timestamp event or rtc wakeup event occurs. standby mode without rtc standby mode is used to achieve the lowest power consumption. the internal voltage regulator is switched off so that the entire v core domain is powered off. the pll, msi, rc, hsi and lsi rc, hse and lse crystal os cillators are also switched off. after entering standby mode, the ram and register contents are lost except for registers in the standby circuitry (wakeup logic, iwdg, rtc, lsi, lse crystal 32k osc, rcc_csr). the device exits standby mode in 60 s when an external reset (nrst pin) or a rising edge on one of the three wkup pin occurs. standby mode consumption: refer to table 23 . note: the rtc, the iwdg, and the corresponding clock sources are not stopped by entering the stop or standby mode. table 3. functionalities depending on the operating power supply range functionalities depending on the operating power supply range operating power supply range dac and adc operation usb dynamic voltage scaling range i/o operation v dd = 1.65 to 1.8 v not functional not functional range 2 or range 3 degraded speed performance v dd = 1.8 to 2.0 v conversion time up to 500 ksps not functional range 2 or range 3 degraded speed performance v dd = 2.0 to 2.4 v conversion time up to 500 ksps functional (1) 1. should be usb compliant from i/o voltage standpoint, the minimum v dd is 3.0 v. range 1, range 2 or range 3 full speed operation v dd = 2.4 to 3.6 v conversion time up to 1 msps functional (1) range 1, range 2 or range 3 full speed operation free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b functional overview doc id 17659 rev 8 15/121 table 4. cpu frequency range depending on dynamic voltage scaling cpu frequency range dynamic voltage scaling range 16 mhz to 32 mhz (1ws) 32 khz to 16 mhz (0ws) range 1 8 mhz to 16 mhz (1ws) 32 khz to 8 mhz (0ws) range 2 2.1 mhz to 4.2 mhz (1ws) 32 khz to 2.1 mhz (0ws) range 3 free datasheet http:///
functional overview stm32l151x6/8/b, stm32l152x6/8/b 16/121 doc id 17659 rev 8 table 5. functionalities depending on the working mode (from run/active down to standby) ips run/active sleep low- power run low- power sleep stop standby wakeup capability wakeup capability cpu y -- y -- -- -- flash y y y n -- -- ram y y y y y -- backup registers y y y y y y eeprom y -- y y y -- brown-out rest (bor) yyyyyyy dma y y y y -- -- programable voltage detector (pvd) yyyyyyy power on reset (por) yyyyyyy power down rest (pdr) yyyyy y high speed internal (hsi) y y -- -- -- -- high speed external (hse) y y -- -- -- -- low speed internal (lsi) yyyyy -- low speed external (lse) yyyyy -- multi-speed internal (msi) y y y y -- -- inter-connect controler y y y y -- -- rtc y y y y y y y rtc tamper y y y y y y y y auto wakeup (awu) yyyyyyyy lcd y y y y y -- usb y y -- -- -- y -- usart y y y y y (1) -- spi y y y y -- i2c y y y y (1) -- free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b functional overview doc id 17659 rev 8 17/121 3.2 arm ? cortex?-m3 core with mpu the arm cortex?-m3 processor is the industry leading processor for embedded systems. it has been developed to provide a low-cost platform that meets the needs of mcu implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. the arm cortex?-m3 32-bit risc processor features exceptional code-efficiency, delivering the high-performance expected from an arm core in the memory size usually associated with 8- and 16-bit devices. the memory protection unit (mpu) improves system re liability by defining the memory attributes (such as read/write access permission s) for different memory regions. it provides up to eight different regions and an optional predefined background region. owing to its embedded arm core, the stm32l15xxx is compatible with all arm tools and software. adc y y -- -- -- -- dac y y y y y -- tempsensor y y y y y -- comparators y y y y y y -- 16-bit and 32-bit timers y y y y -- -- iwdg y y y y y y y y wwdg y y y y -- -- touch sensing y -- -- -- -- -- systic timer y y y y -- gpios y y y y y y 3pins wakeup time to run mode 0 s 0.36 s 3 s 32 s < 8 s 50 s consumption v dd =1.8v to 3.6v (typ) d o w n t o 214 a/mhz (from flash) d o w n t o 50 a/mhz (from flash) down to 9 a down to 4.4 a 0.65 a (no rtc) v dd =1.8v 0.3 a (no rtc) v dd =1.8v 1.4 a (with rtc) v dd =1.8v 1 a (with rtc) v dd =1.8v 0.65 a (no rtc) v dd =3.0v 0.3 a (no rtc) v dd =3.0v 1.6 a (with rtc) v dd =3.0v 1.3 a (with rtc) v dd =3.0v 1. the startup on communication line wakes the cpu which was made possible by an exti, this induces a delay before entering run mode. table 5. functionalities depending on the working mode (from run/active down to standby) (continued) ips run/active sleep low- power run low- power sleep stop standby wakeup capability wakeup capability free datasheet http:///
functional overview stm32l151x6/8/b, stm32l152x6/8/b 18/121 doc id 17659 rev 8 nested vectored interrupt controller (nvic) the ultra-low-power stm32l15xxx embeds a nested vectored interrupt controller able to handle up to 45 maskable interrupt channels (not including the 16 interrupt lines of cortex?-m3) and 16 priority levels. closely coupled nvic gives low-latency interrupt processing interrupt entry vector table address passed directly to the core closely coupled nvic core interface allows early processing of interrupts processing of late arriving , higher-priority interrupts support for tail-chaining processor state automatically saved interrupt entry restored on interrupt exit with no instruction overhead this hardware block provides flexible interrupt management features with minimal interrupt latency. 3.3 reset and supply management 3.3.1 power supply schemes v dd = 1.65 to 3.6 v: external power supply for i/os and the internal regulator. provided externally through v dd pins. v ssa , v dda = 1.65 to 3.6 v: external analog power supplies for adc, reset blocks, rcs and pll (minimum voltage to be applied to v dda is 1.8 v when the adc is used). v dda and v ssa must be connected to v dd and v ss , respectively. 3.3.2 power supply supervisor the device has an integrated zeropower power-on reset (por)/power-down reset (pdr) that can be coupled with a brownout reset (bor) circuitry. the device exists in two versions: the version with bor activated at power-on operates between 1.8 v and 3.6 v. the other version without bor operates between 1.65 v and 3.6 v. after the v dd threshold is reached (1.65 v or 1.8 v depending on the bor which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the bor permanently: in this case, the v dd min value becomes 1.65 v (whatever the version, bor active or not, at power-on). when bor is active at power-on, it ensures proper operation starting from 1.8 v whatever the power ramp-up phase before it reaches 1.8 v. when bor is not active at power-up, the power ramp-up should guarantee that 1.65 v is reached on v dd at least 1 ms after it exits the por area. free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b functional overview doc id 17659 rev 8 19/121 five bor thresholds are available through option bytes, starting from 1.8 v to 3 v. to reduce the power consumption in stop mode, it is possible to automatically switch off the internal reference voltage (v refint ) in stop mode. the device remains in reset mode when v dd is below a specified threshold, v por/pdr or v bor , without the need for any external reset circuit. note: the start-up time at power-on is typically 3.3 ms when bor is active at power-up, the start- up time at power-on can be decreased down to 1 ms typically for devices with bor inactive at power-up. the device features an embedded programmable voltage detector (pvd) that monitors the v dd /v dda power supply and compares it to the v pvd threshold. this pvd offers 7 different levels between 1.85 v and 3.05 v, chosen by software, with a step around 200 mv. an interrupt can be generated when v dd /v dda drops below the v pvd threshold and/or when v dd /v dda is higher than the v pvd threshold. the interrupt service routine can then generate a warning message and/or put the mcu into a safe state. the pvd is enabled by software. 3.3.3 voltage regulator the regulator has three operation modes: main (mr), low power (lpr) and power down. mr is used in run mode (nominal regulation) lpr is used in the low-power run, low-power sleep and stop modes power down is used in standby mode. the regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and ram are lost are lost except for the standby circuitry (wakeup logic, iwdg, rtc, lsi, lse crystal 32k osc, rcc_csr). 3.3.4 boot modes at startup, boot pins are used to select one of three boot options: boot from flash memory boot from system memory boot from embedded ram the boot loader is located in system memory. it is used to reprogram the flash memory by using usart1 or usart2. see stm32? microcontroller system memory boot mode an2606 for details. free datasheet http:///
functional overview stm32l151x6/8/b, stm32l152x6/8/b 20/121 doc id 17659 rev 8 3.4 clock management the clock controller distributes the clocks coming from different oscilla tors to the core and the peripherals. it also manages clock gating for low power modes and ensures clock robustness. it features: clock prescaler : to get the best tradeoff between speed and current consumption, the clock frequency to the cpu and peripherals can be adjusted by a programmable prescaler safe clock switching : clock sources can be changed safely on the fly in run mode through a configuration register. clock management : to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. master clock source : three different clock sources can be used to drive the master clock: ? 1-24 mhz high-speed external crystal (hse), that can supply a pll ? 16 mhz high-speed internal rc oscillator (hsi), trimmabl e by software, that can supply a pll ? multispeed internal rc oscillator (msi), tr immable by software, able to generate 7 frequencies (65.5 khz, 131 khz, 262 khz, 524 khz, 1.05 mhz, 2.1 mhz, 4.2 mhz) with a consumption proportional to speed, down to 750 na typical. when a 32.768 khz clock source is available in the system (lse), the msi frequency can be trimmed by software down to a 0.5% accuracy. auxiliary clock source : two ultra-low-power clock sources that can be used to drive the lcd controller and the real-time clock: ? 32.768 khz low-speed external crystal (lse) ? 37 khz low-speed internal rc (lsi), also used to drive the independent watchdog. the lsi clock can be measur ed using the high-s peed internal rc oscillator for greater precision. rtc and lcd clock sources: the lsi, lse or hse sources can be chosen to clock the rtc and the lcd, whatever the system clock. usb clock source: the embedded pll has a dedicated 48 mhz clock output to supply the usb interface. startup clock : after reset, the microcontroller restarts by default with an internal 2.1 mhz clock (msi). the prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. clock security system (css): this feature can be enabled by software. if a hse clock failure occurs, the master clock is automatically switched to hsi and a software interrupt is generated if enabled. clock-out capability (mco: microcontroller clock output): it outputs one of the internal clocks for external use by the application. several prescalers allow the configuration of the ahb frequency, the high-speed apb (apb2) and the low-speed apb (apb1) domains. the maximum freque ncy of the ahb and the apb domains is 32 mhz. see figure 2 for details on the clock tree. free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b functional overview doc id 17659 rev 8 21/121 figure 2. clock tree 2. for the usb function to be available, both hse and pll must be enabled, with the cpu running at either 24 mhz or 32 mhz. ahb prescaler /1, 2..512 apb1 prescaler /1, 2, 4, 8, 16 pclk1 hclk to ahb bus, core, memory and dma peripherals to apb1 peripheral clock enable enable peripheral clock apb2 prescaler /1, 2, 4, 8, 16 pclk2 to tim9, 10, and 11 peripherals to apb2 peripheral clock enable enable peripheral clock 32 mhz max 32 mhz max to cortex system timer /8 clock enable sysclk timxclk timxclk fclk cortex free running clock to tim2,3,4,6 and 7 if (apb1 prescaler =1) x1 else x2 if (apb2 prescaler =1) x1 else x2 32 mhz max hse osc 1-24 mhz osc_in osc_out hsi rc 16 mhz x3,x4,x6,x8 x12,x16,x24 pllmul pllclk hsi hsi hse pllsrc sw css x32,x48 /2,/3,/4 48 mhz usbclk to usb interface plldiv to adc peripheral clock enable adcclk mhz max 32 osc32_in osc32_out lse osc 32.768 khz lsi rc 37 khz to independent watchdog (iwdg) mco pllclk hsi hse lse lsi /2,4, 8,16 to rtc mcosel rtcclk rtcsel[1:0] iwdgclk sysclk /1,2,4, 8,16 msi lse lsi to lcd to timer 9, 10, 11 etr hse = high-speed external clock signal lse = low -speed external clock signal lsi = low-speed internal clock signal hsi = high-speed internal clock signal legend : ai17212c ms i = multispeed internal clock signal pllvco/2 msi rc msi free datasheet http:///
functional overview stm32l151x6/8/b, stm32l152x6/8/b 22/121 doc id 17659 rev 8 3.5 low power real-time clock and backup registers the real-time clock (rtc) is an independent bcd timer/counter. dedicated registers contain the second, minute, hour (12/24 hour), week day, date, month, year, in bcd (binary-coded decimal) format. correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. the rtc provides a programmable alarm and programmable periodic interrupts with wakeup from stop and standby modes. the programmable wakeup time ranges from 120 s to 36 hours stop mode consumption with lsi and auto-wakeup: 1.2 a (at 1.8 v) and 1.4 a (at 3.0 v) stop mode consumption with lse, calendar and auto-wakeup: 1.3 a (at 1.8v), 1.6 a (at 3.0 v) the rtc can be calibrated with an external 512 hz output, and a digital compensation circuit helps reduce drift due to crystal deviation. there are twenty 32-bit backup registers provided to store 80 bytes of user application data. they are cleared in case of tamper detection. 3.6 gpios (general-purpose inputs/outputs) each of the gpio pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. most of the gpio pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated afio registers. all gpios are high current capable. the alternate function configuration of i/os can be locked if needed following a specific sequence in order to avoid spurious writing to the i/o registers. the i/o controller is connected to the ahb with a toggling speed of up to 16 mhz. external interrupt/event controller (exti) the external interrupt/event controller consists of 23 edge detector lines used to generate interrupt/event requests. each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. a pending register maintains the status of the interrupt requests. the exti can detect an external line with a pulse width shorter than the internal apb2 cloc k period. up to 83 gp ios can be connected to the 16 external interrupt lines. the 7 other lines are connected to rtc, pvd, usb or comparator events. free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b functional overview doc id 17659 rev 8 23/121 3.7 memories the stm32l15xxx devices have the following features: up to 16 kbyte of embedded ram accessed (read/write) at cpu clock speed with 0 wait states. with the enhanced bus matrix, operating the ram does not lead to any performance penalty during accesses to the system bus (ahb and apb buses). the non-volatile memory is divided into three arrays: ? 32, 64 or 128 kbyte of embedded flash program memory ? 4 kbyte of data eeprom ? options bytes the options bytes are used to write-protect the memory (with 4 kb granularity) and/or readout-protect the whole memory with the following options: ? level 0: no readout protection ? level 1: memory readout protection, the flash memory cannot be read from or written to if either debug features are connected or boot in ram is selected ? level 2: chip readout protection, debug features (cortex-m3 jtag and serial wire) and boot in ram selection disabled (jtag fuse) the whole non-volatile memory embeds the error correction code (ecc) feature. 3.8 dma (direct memory access) the flexible 7-channel, general-purpose dma is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. the dma controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. each channel is connected to dedicated hardware dma requests, with software trigger support for each channel. configuration is done by software and transfer sizes between source and destination are independent. the dma can be used with the main peripherals: spi, i 2 c, usart, general-purpose timers and adc. 3.9 lcd (liquid crystal display) the lcd drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels. internal step-up converter to guarantee functionality and contrast control irrespective of v dd . this converter can be deactivated, in which case the v lcd pin is used to provide the voltage to the lcd supports static, 1/2, 1/3, 1/4 and 1/8 duty supports static, 1/2, 1/3 and 1/4 bias phase inversion to reduce power consumption and emi up to 8 pixels can be programmed to blink unneeded segments and common pins can be used as general i/o pins lcd ram can be updated at any time owing to a double-buffer the lcd controller can operate in stop mode free datasheet http:///
functional overview stm32l151x6/8/b, stm32l152x6/8/b 24/121 doc id 17659 rev 8 3.10 adc (analog-to-digital converter) a 12-bit analog-to-digital converters is embedded into stm32l15xxx devices with up to 24 external channels, performing conversions in single-shot or scan mode. in scan mode, automatic conversion is performed on a selected group of analog inputs. the adc can be served by the dma controller. an analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. an interrupt is generated when the converted voltage is outside the programmed thresholds. the events generated by the general-purpose timers (timx) can be internally connected to the adc start trigger and injection trigger, to allow the applicatio n to synchronize a/d conversions and timers. an injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task. the adc includes a specific low power mode. the converter is able to operate at maximum speed even if the cpu is operating at a very low frequency and has an auto-shutdown function. the adc?s runtime and analog front-end current consumption are thus minimized whatever the mcu operating mode. 3.10.1 temperature sensor the temperature sensor (t sense ) generates a voltage v sense that varies linearly with temperature. the temperature sensor is internally connected to the adc_in16 input channel which is used to convert the sensor output voltage into a digital value. the sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. as the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. to improve the accuracy of the temperat ure sensor measurement, each device is individually factory-calibrated by st. the temperature sensor factory calibration data are stored by st in the system memory area, accessible in read-only mode. table 6. temperature sensor calibration values calibration value name description memory address tsense_cal1 ts adc raw data acquired at temperature of 30 c, v dda = 3 v 0x1ff8 007a-0x1ff8 007b tsense_cal2 ts adc raw data acquired at temperature of 110 c v dda = 3 v 0x1ff8 007e-0x1ff8 007f free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b functional overview doc id 17659 rev 8 25/121 3.10.2 internal voltage reference (v refint ) the internal voltage reference (v refint ) provides a stable (bandgap) voltage output for the adc and comparators. v refint is internally connected to the adc_in17 input channel. it enables accurate monitoring of the v dd value (when no external voltage, vref+, is available for adc). the precise voltage of v refint is individually measured for each part by st during production test and stored in the system memory area. it is accessible in read- only mode. 3.11 dac (digital-to-analog converter) the two 12-bit buffered dac channels can be used to convert two digital signals into two analog voltage signal outputs. the chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration. this dual digital interface supports the following features: two dac converters: one for each output channel left or right data alignment in 12-bit mode synchronized update capability noise-wave generation triangular-wave generation dual dac channels? independent or simultaneous conversions dma capability for each channel (inc luding the underrun interrupt) external triggers for conversion input reference voltage v ref+ eight dac trigger inputs are used in the stm32l15xxx. the dac channels are triggered through the timer update outputs that are also connected to different dma channels. 3.12 ultra-low-power comparators and reference voltage the stm32l15xxx embeds two comparators sharing the same current bias and reference voltage. the reference voltage can be internal or external (coming from an i/o). one comparator with fixed threshold one comparator with rail-to-rail inputs, fast or slow mode. the threshold can be one of the following: ? dac output ? external i/o ? internal reference voltage (v refint ) or v refint submultiple (1/4, 1/2, 3/4) table 7. internal voltage reference measured values calibration value name description memory address vrefint_cal raw data acquired at temperature of 30 c v dda = 3 v 0x1ff8 0078-0x1ff8 0079 free datasheet http:///
functional overview stm32l151x6/8/b, stm32l152x6/8/b 26/121 doc id 17659 rev 8 both comparators can wake up from stop mode, and be combined into a window comparator. the internal reference voltage is available externally via a low power / low current output buffer (driving curr ent capability of 1 a typical). 3.13 routing interface this interface controls the internal routing of i/os to tim2, tim3, tim4 and to the comparator and reference voltage output. 3.14 touch sensing the stm32l15xxx devices provide a simple solution for adding capacitive sensing functionality to any application. these devices offer up to 20 capacitive sensing channels distributed over 10 analog i/o groups. only software capacitive sensing acquisition mode is supported. capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). the capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. it consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. the capacitive sensing acquisition only requires few external components to operate. reliable touch sensing functionality can be qu ickly and easily implemented using the free stm32l1xx stmtouch touch sensing firmware library. 3.15 timers and watchdogs the ultra-low-power stm32l15xxx devices include six general-purpose timers, two basic timers and two watchdog timers. ta bl e 8 compares the features of the general-purpose and basic timers. table 8. timer feature comparison timer counter resolution counter type prescaler factor dma request generation capture/compare channels complementary outputs tim2, tim3, tim4 16-bit up, down, up/down any integer between 1 and 65536 ye s 4 n o tim9 16-bit up any integer between 1 and 65536 no 2 no free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b functional overview doc id 17659 rev 8 27/121 tim10, tim11 16-bit up any integer between 1 and 65536 no 1 no tim6, tim7 16-bit up any integer between 1 and 65536 ye s 0 n o table 8. timer feature comparison timer counter resolution counter type prescaler factor dma request generation capture/compare channels complementary outputs free datasheet http:///
functional overview stm32l151x6/8/b, stm32l152x6/8/b 28/121 doc id 17659 rev 8 3.15.1 general-purpose timers (tim2, tim3, tim4, tim9, tim10 and tim11) there are six synchronizable general-purpose timers embedded in the stm32l15xxx devices (see ta bl e 8 for differences). tim2, tim3, tim4 these timers are based on a 16-bit auto-rel oad up/downcounter and a 16-bit prescaler. they feature 4 independent channels each for input capture/output compare, pwm or one- pulse mode output. this gives up to 12 input captures/output compares/pwms on the largest packages. the tim2, tim3, tim4 general-purpose timers can work together or with the tim10, tim11 and tim9 general-purpose timers via the time r link feature for synchronization or event chaining. their counter can be frozen in debug mode. any of the general-purpose timers can be used to generate pwm outputs. tim2, tim3, tim4 all have independent dma request generation. these timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. tim10, tim11 and tim9 these timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. tim10 and tim11 feature one independent channel, whereas tim9 has two independent channels for input capture/output compare, pwm or one-pulse mode output. they can be synchronized with the tim2, tim3, tim4 full-featured general-purpose timers. they can also be used as simple time bases and be clocked by the lse clock source (32.768 khz) to provide time bases independent from the main cpu clock. 3.15.2 basic timers (tim6 and tim7) these timers are mainly used for dac trigger generation. they can also be used as generic 16-bit time bases. 3.15.3 systick timer this timer is dedicated to the os, but could also be used as a standard downcounter. it is based on a 24-bit downcounter with autorel oad capability and a programmable clock source. it features a maskable system interrupt generation when the counter reaches 0. 3.15.4 independent watchdog (iwdg) the independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. it is clocked from an independent 37 khz internal rc and, as it operates independently of the main clock, it can operate in stop and standby modes. it can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. it is hardware- or software-configurable through the option bytes. the counter can be frozen in debug mode. free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b functional overview doc id 17659 rev 8 29/121 3.15.5 window watchdog (wwdg) the window watchdog is based on a 7-bit downc ounter that can be set as free-running. it can be used as a watchdog to reset the device when a problem occurs. it is clocked from the main clock. it has an early warning interrup t capability and the counter can be frozen in debug mode. 3.16 communication interfaces 3.16.1 i2c bus up to two i2c bus interfaces can operate in multimaster and slave modes. they can support standard and fast modes. they support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. a hardware crc generation/verification is embedded. they can be served by dma and they support sm bus 2.0/pm bus. 3.16.2 universal synchronous/asynch ronous receiver tr ansmitter (usart) all usart interfaces are able to communicate at speeds of up to 4 mbit/s. they provide hardware management of the cts and rts signals. they support irda sir endec, are iso 7816 compliant and have lin master/slave capability. all usart interfaces can be served by the dma controller. 3.16.3 serial peripheral interface (spi) up to two spis are able to communicate at up to 16 mbits/s in slave and master modes in full-duplex and half-duplex communication modes. the 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. the hardware crc generation/verification supports basic sd card/mmc modes. both spis can be served by the dma controller. 3.16.4 universal serial bus (usb) the stm32l15xxx embeds a usb device peripheral compatible with the usb full speed 12 mbit/s. the usb interface implements a full speed (12 mbit/s) function interface. it has software-configurable endpoint setting and supports suspend/resume. the dedicated 48 mhz clock is generated from the internal main pll (the clock source must use a hse crystal oscillator). free datasheet http:///
functional overview stm32l151x6/8/b, stm32l152x6/8/b 30/121 doc id 17659 rev 8 3.17 crc (cyclic redundancy check) calculation unit the crc (cyclic redundancy check) calculation unit is used to get a crc code from a 32-bit data word and a fixed generator polynomial. among other applications, crc-based techniques are used to verify data transmission or storage integrity. in the scope of the en/iec 60335-1 standard, they offer a means of verifying the flash memory integrity. the crc ca lculation unit helps co mpute a signature of the software during runtime, to be compared with a reference signature generated at link- time and stored at a given memory location. 3.18 development support serial wire jtag debug port (swj-dp) the arm swj-dp interface is embedded, and is a combined jtag and serial wire debug port that enables either a serial wire debug or a jtag probe to be connected to the target. the jtag jtms and jtck pins are shared with swdat and swclk, respectively, and a specific sequence on the jtms pin is used to switch between jtag-dp and sw-dp. the jtag port can be permanently disabled with a jtag fuse. embedded trace macrocell? the arm ? embedded trace macrocell pr ovides a greater visibility of the instruction and data flow inside the cpu core by streaming compressed data at a very high rate from the stm32l15xxx through a small number of etm pi ns to an external hardware trace port analyzer (tpa) device. the tpa is connected to a host computer using usb, ethernet, or any other high-speed channel. real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. tpa hardware is commercially available from common development tool vendors. it operates with third party debugger software tools. free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b pin descriptions doc id 17659 rev 8 31/121 4 pin descriptions figure 3. stm32l15xvx ufbga100 ballout 1. this figure shows the package top view. a i17096e a b e d c f g h j k l m pe 3 o s c_in pc15 o s c 3 2_out pc14 pc1 3 wkup2 pe4 o s c_out pc0 v ss a vref- vref+ vdda pe1 pe5 pe2 pe6 wukp 3 vlcd v ss _5 vdd_5 nr s t pc1 pc 3 pa 0 wkup1 pa 1 pb 8 pe0 pb9 v ss _ 3 v ss _4 vdd_4 pc2 pa 2 pa 3 pa 4 boot0 pb7 vdd_ 3 pa 5 pa 6 pa 7 pd7 pb6 pb5 pc4 pc5 pb0 pd5 pd6 pb2 pb1 pb4 pd4 pe 8 pe7 pb 3 pd 3 pd2 pd9 pe10 pe9 pa15 pd1 pd0 pd 8 pe12 pe11 pa14 pc12 pc11 pc 8 pa 9 pd15 pd12 pb15 pb10 pe1 3 pa 1 3 pc10 ph2 pa 8 pc7 pd14 pd11 pb14 pb11 pe14 v ss _2 vdd_2 pa12 pa11 pa10 pc9 pc6 pd1 3 pd10 pb1 3 pb12 pe15 v ss _1 vdd_1 2 3 4 5 6 7 8 9 10 11 12 1 ph0 ph1 o s c 3 2_in free datasheet http:///
pin descriptions stm32l151x6/8/b, stm32l152x6/8/b 32/121 doc id 17659 rev 8 figure 4. stm32l15xvx lqfp100 pinout 1. this figure shows the package top view. 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 vdd_2 vss_2 ph2 pa13 pa12 pa11 pa10 pc9 pc8 pc7 pc6 pd15 pd14 pd13 pd12 pd11 pd10 pd9 pd8 pb15 pb14 pb13 pb12 pa 3 vss_4 vdd_4 pa 4 pa 5 pa 6 pa 7 pc4 pc5 pb0 pb1 pb2 pe7 pe8 pe9 pe10 pe11 pe12 pe13 pe14 pe15 pb10 pb11 vss_1 vdd_1 vdd_3 vss_3 pe1 pe0 pb9 pb8 boot0 pb7 pb6 pb5 pb4 pb3 pd7 pd6 pd5 pd4 pd3 pd2 pd1 pd0 pc12 pc11 pc10 pa15 pa14 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 pe2 pe3 pe4 pe5 pe6-wkup3 v lcd pc13-wkup2 pc14-osc32_in pc15-osc32_out vss_5 vdd_5 ph0-osc_in ph1-osc_out nrst pc0 pc1 pc2 pc3 vssa vref- vref+ vdda pa 0 - w k u p1 pa 1 pa 2 ai15692c lqfp100 pa8 pa9 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b pin descriptions doc id 17659 rev 8 33/121 figure 5. stm32l15xrx tfbga64 ballout 1. this figure shows the package top view. ai16090c pb2 pc14- o s c 3 2_in pa7 pa4 pa2 pa15 pb11 pb1 pa6 pa 3 h pb10 pc5 pc4 d pa 8 pa9 boot0 pb 8 c pc9 pa11 pb6 pc12 v dda pb9 b pa12 pc10 pc15- o s c 3 2_out pb 3 pd2 a 8 7 6 5 4 3 2 1 v ss _4 o s c_in o s c_out v dd_4 g f e pc2 v ref+ pc1 3 - wkup2 pb4 pa1 3 pa14 pb7 pb5 v ss _ 3 pc7 pc 8 pc0 nr s t pc1 pb0 pa5 pb14 v dd_2 v dd_ 3 pb1 3 vlcd pc11 pa10 v ss _2 v ss _1 pc6 v ss a pa1 v dd_1 pb15 pb12 pa0-wkup1 ph0- ph1- free datasheet http:///
pin descriptions stm32l151x6/8/b, stm32l152x6/8/b 34/121 doc id 17659 rev 8 figure 6. stm32l15xrx lqfp64 pinout 1. this figure shows the package top view. figure 7. stm32l15xcx lqfp48 pinout 1. this figure shows the package top view. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 17 18 19 20 21 22 23 24 29 30 31 32 25 26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 v lcd pc13-wkup2 pc14-osc32_in pc15-osc32_out ph0 -osc_in ph1- osc_out nrst pc0 pc1 pc2 pc3 vssa vdda pa 0 - w k u p1 pa 1 pa 2 vdd_3 vss_3 pb9 pb8 boot0 pb7 pb6 pb5 pb4 pb3 pd2 pc12 pc11 pc10 pa 1 5 pa 1 4 vdd_2 vss_2 pa 1 3 pa 1 2 pa 1 1 pa 1 0 pa 9 pa 8 pc9 pc8 pc7 pc6 pb15 pb14 pb13 pb12 pa 3 vss_4 vdd_4 pa 4 pa 5 pa 6 pa 7 pc4 pc5 pb0 pb1 pb2 pb10 pb11 vss_1 vdd_1 lqfp64 ai15693c 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 48 47 46 45 pa 3 pa 4 pa 5 pa 6 pa 7 pb0 pb1 pb2 pb10 pb11 vss_1 vdd_1 vdd_2 vss_2 pa 1 3 pa 1 2 pa 1 1 pa 1 0 pa 9 pa 8 pb15 pb14 pb13 pb12 v lcd pc13-wkup2 pc14-osc32_in pc15-osc32_out ph0-osc_in ph1-osc_out nrst vssa vdda pa 0 -w k u p1 pa 1 pa 2 vdd_3 vss_3 pb9 pb8 boot0 pb7 pb6 pb5 pb4 pb3 pa 1 5 pa 1 4 lqfp48 ai15694 c free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b pin descriptions doc id 17659 rev 8 35/121 figure 8. stm32l15xcx ufqfpn48 pinout 1. this figure shows the package top view. v ss_3 boot0 pb7 pb6 pb5 pb4 pb3 pa15 pa14 48 47 46 45 44 43 42 41 40 1 36 v dd_2 2 35 v ss_2 3 34 pa13 4 ufqfpn48 33 pa12 v ssa 5 32 pa11 v dda 6 31 pa10 pa0-wkup1 7 30 pa9 pa1 8 29 pa8 pa2 9 28 v dd_1 13 14 15 16 17 18 19 20 21 pa3 pa4 pa5 pa6 pa7 pb0 pb1 pb2 v ss_1 ai15695d 10 11 12 27 26 25 22 23 24 39 38 37 pb10 pb11 pb15 pb14 pb13 pb12 v lcd pc13-wkup2 pc14-osc32_in pc15-osc32_out ph0-osc_in ph1-osc_out nrst pb9 pb8 v dd_3 free datasheet http:///
pin descriptions stm32l151x6/8/b, stm32l152x6/8/b 36/121 doc id 17659 rev 8 table 9. stm32l15xxx pin definitions pins pin name type (1) i/o level (2) main function (3) (after reset) alternate functions lqfp100 lqfp64 tfbga64 ufbga100 lqfp48 or ufqfpn48 1 - b2 - pe2 i/o ft pe2 tracec lk/lcd_seg38/tim3_etr 2 - a1 - pe3 i/o ft pe3 trac ed0/lcd_seg39/tim3_ch1 3 - b1 - pe4 i/o ft pe4 traced1/tim3_ch2 4 - c2 - pe5 i/o ft pe5 traced2/tim9_ch1 5 - d2 - pe6-wkup3 i/o ft pe6 traced3/wkup3/tim9_ch2 6 1 b2 e2 1 v lcd (4) sv lcd 7 2 a2 c1 2 pc13-wkup2 i/o ft pc13 rtc_tamp1/rtc_ts/rtc_out/wkup2 83a1d13 pc14- osc32_in (5) i/o pc14 osc32_in 9 4 b1 e1 4 pc15- osc32_out (5) i/o pc15 osc32_out 10 - - f2 - v ss_5 sv ss_5 11 - - g2 - v dd_5 sv dd_5 12 5 c1 f1 5 ph0- osc_in (6) i ph0 osc_in 13 6 d1 g1 6 ph1- osc_out o ph1 osc_out 14 7 e1 h2 7 nrst i/o nrst 15 8 e3 h1 - pc0 i/o ft pc0 adc_in10/lcd_seg18/comp1_inp 16 9 e2 j2 - pc1 i/o ft pc1 adc_in11/lcd_seg19/comp1_inp 17 10 f2 j3 - pc2 i/o ft pc2 adc_in12/lcd_seg20/comp1_inp 18 11 - (7) k2 - pc3 i/o pc3 adc_in13/lcd_seg21/comp1_inp 19 12 f1 j1 8 v ssa sv ssa 20 - - k1 - v ref- sv ref- 21 - g1 (7) l1 - v ref+ sv ref+ 22 13 h1 m1 9 v dda sv dda 23 14 g2 l2 10 pa0-wkup1 i/o ft pa0 wkup1/usart2_cts/adc_in0/tim2_ch1_etr/ comp1_inp 24 15 h2 m2 11 pa1 i/o ft pa1 usart2_rts/adc_in1/tim2_ch2/lcd_seg0/ comp1_inp free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b pin descriptions doc id 17659 rev 8 37/121 25 16 f3 k3 12 pa2 i/o ft pa2 usart2_tx/adc_in2/tim2_ch3/tim9_ch1/ lcd_seg1/comp1_inp 26 17 g3 l3 13 pa3 i/o pa3 usart2_rx/adc_in3/tim2_ch4/tim9_ch2/ lcd_seg2/comp1_inp 27 18 c2 e3 - v ss_4 sv ss_4 28 19 d2 h3 - v dd_4 sv dd_4 29 20 h3 m3 14 pa4 i/o pa4 spi1_nss/usart2_ck/ adc_in4/dac_out1/comp1_inp 30 21 f4 k4 15 pa5 i/o pa5 spi1_sck/adc_in5/ dac_out2/tim2_ch1_etr/comp1_inp 31 22 g4 l4 16 pa6 i/o ft pa6 spi1_miso/adc_in6/tim3_ch1/ lcd_seg3/tim10_ch1/comp1_inp 32 23 h4 m4 17 pa7 i/o ft pa7 spi1_mosi/adc_in7/tim3_ch2/ lcd_seg4/tim11_ch1/comp1_inp 33 24 h5 k5 - pc4 i/o ft pc4 adc_in14/lcd_seg22/comp1_inp 34 25 h6 l5 - pc5 i/o ft pc5 adc_in15/lcd_seg23/comp1_inp 35 26 f5 m5 18 pb0 i/o pb0 adc_in8/tim3_ch3/lcd_seg5/ comp1_inp/vref_out 36 27 g5 m6 19 pb1 i/o ft pb1 adc_in9/tim3_ch4/lcd_seg6/ comp1_inp/vref_out 37 28 g6 l6 20 pb2 i/o ft pb2/boot1 38 - - m7 - pe7 i/o pe7 adc_in22/comp1_inp 39 - - l7 - pe8 i/o pe8 a dc_in23/comp1_inp 40 - - m8 - pe9 i/o pe9 adc_in24/tim2_ch1_etr/comp1_inp 41 - - l8 - pe10 i/o pe10 adc_in25/tim2_ch2/comp1_inp 42 - - m9 - pe11 i/o ft pe11 tim2_ch3 43 - - l9 - pe12 i/o ft pe12 tim2_ch4/spi1_nss 44 - - m10 - pe13 i/o f t pe13 spi1_sck 45 - - m11 - pe14 i/o ft pe14 spi1_miso 46 - - m12 - pe15 i/o ft pe15 spi1_mosi 47 29 g7 l10 21 pb10 i/o ft pb10 i2c2_sc l/usart3_tx/tim2_ch3/lcd_seg10 48 30 h7 l11 22 pb11 i/o ft pb11 i2c2_sda /usart3_rx/tim2 _ch4/lcd_seg11 table 9. stm32l15xxx pin definitions (continued) pins pin name type (1) i/o level (2) main function (3) (after reset) alternate functions lqfp100 lqfp64 tfbga64 ufbga100 lqfp48 or ufqfpn48 free datasheet http:///
pin descriptions stm32l151x6/8/b, stm32l152x6/8/b 38/121 doc id 17659 rev 8 49 31 d6 f12 23 v ss_1 sv ss_1 50 32 e6 g12 24 v dd_1 sv dd_1 51 33 h8 l12 25 pb12 i/o ft pb12 spi2_nss/i2c2_smba/usart3_ck/lcd_seg12/ adc_in18/comp1_inp/tim10_ch1 52 34 g8 k12 26 pb13 i/o ft pb13 spi2_sck/usart3_cts/l cd_seg13/adc_in19/ comp1_inp/tim9_ch1 53 35 f8 k11 27 pb14 i/o ft pb14 spi2_miso/usart3_rts/lcd_seg14/adc_in20/ comp1_inp/tim9_ch2 54 36 f7 k10 28 pb15 i/o ft pb15 spi2_mosi/lcd_seg15/adc_in21/ comp1_inp/tim11_ch1/rtc_refin 55 - - k9 - pd8 i/o ft pd8 usart3_tx/lcd_seg28 56 - - k8 - pd9 i/o ft pd9 usart3_rx/lcd_seg29 57 - - j12 - pd10 i/o ft pd1 0 usart3_ck/lcd_seg30 58 - - j11 - pd11 i/o ft pd11 usart3_cts/lcd_seg31 59 - - j10 - pd12 i/o ft pd12 tim 4_ch1/usart3_rts/lcd_seg32 60 - - h12 - pd13 i/o ft pd13 tim4_ch2/lcd_seg33 61 - - h11 - pd14 i/o ft pd14 tim4_ch3/lcd_seg34 62 - - h10 - pd15 i/o ft pd15 tim4_ch4/lcd_seg35 63 37 f6 e12 - pc6 i/o ft pc6 tim3_ch1/lcd_seg24 64 38 e7 e11 pc7 i/o ft pc7 tim3_ch2/lcd_seg25 65 39 e8 e10 pc8 i/o ft pc8 tim3_ch3/lcd_seg26 66 40 d8 d12 - pc9 i/o ft pc9 tim3_ch4/lcd_seg27 67 41 d7 d11 29 pa8 i/o ft pa8 usart1_ck/mco/lcd_com0 68 42 c7 d10 30 pa9 i/o ft pa9 usart1_tx/lcd_com1 69 43 c6 c12 31 pa10 i/o ft pa10 usart1_rx/lcd_com2 70 44 c8 b12 32 pa11 i/o ft pa11 usart1_cts/usb_dm/spi1_miso 71 45 b8 a12 33 pa12 i/o ft pa12 usart1_rts/usb_dp/spi1_mosi 72 46 a8 a11 34 pa13 i/o ft jtms/ swdat 73 - - c11 - ph2 i/o ft ph2 74 47 d5 f11 35 v ss_2 sv ss_2 table 9. stm32l15xxx pin definitions (continued) pins pin name type (1) i/o level (2) main function (3) (after reset) alternate functions lqfp100 lqfp64 tfbga64 ufbga100 lqfp48 or ufqfpn48 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b pin descriptions doc id 17659 rev 8 39/121 75 48 e5 g11 36 v dd_2 sv dd_2 76 49 a7 a10 37 pa14 i/o ft jtck /swclk 77 50 a6 a9 38 pa15 i/o ft jtdi tim2_ch1_etr/pa15/spi1_nss/lcd_seg17 78 51 b7 b11 - pc10 i/o ft pc10 usart3_tx/lcd_se g28/lcd_seg40/ lcd_com4 79 52 b6 c10 - pc11 i/o ft pc11 usart3_rx/lcd_seg29/lcd_seg41/ lcd_com5 80 53 c5 b10 - pc12 i/o ft pc12 usart3_ck/lcd_seg30/lcd_seg42/ lcd_com6 81 - - c9 - pd0 i/o ft pd0 spi2_nss/tim9_ch1 82 - - b9 - pd1 i/o ft pd1 spi2_sck 83 54 b5 c8 pd2 i/o ft pd2 tim3_etr/lcd_seg31/lcd_seg43/lcd_com7 84 - - b8 - pd3 i/o ft pd3 usart2_cts/spi2_miso 85 - - b7 - pd4 i/o ft pd4 usart2_rts/spi2_mosi 86 - - a6 - pd5 i/o ft pd5 usart2_tx 87 - - b6 - pd6 i/o ft pd6 usart2_rx 88 - - a5 - pd7 i/o ft pd7 usart2_ck/tim9_ch2 89 55 a5 a8 39 pb3 i/o ft jtdo tim2_ch2/pb3/spi1_sck/comp2_inm/ lcd_seg7 90 56 a4 a7 40 pb4 i/o ft njtrst tim3_ch1/pb4/ spi1_miso/comp2_inp/lcd_seg8 91 57 c4 c5 41 pb5 i/o ft pb5 i2c1_smba/tim3_ch2/s pi1_mosi/comp2_inp/ lcd_seg9 92 58 d3 b5 42 pb6 i/o ft pb6 i2c1_scl/tim4_ch1/usart1_tx 93 59 c3 b4 43 pb7 i/o ft pb7 i2c1_sda/tim4_ch2/ usart1_rx/pvd_in 94 60 b4 a4 44 boot0 i boot0 95 61 b3 a3 45 pb8 i/o ft pb8 tim4_ ch3/i2c1_scl/lcd_seg16/tim10_ch1 96 62 a3 b3 46 pb9 i/o ft pb9 tim4_ch4/i2c1_sda/lcd_com3/tim11_ch1 97 - - c3 - pe0 i/o ft pe0 tim4 _etr/lcd_seg36/tim10_ch1 98 - - a2 - pe1 i/o ft pe1 lcd_seg37/tim11_ch1 table 9. stm32l15xxx pin definitions (continued) pins pin name type (1) i/o level (2) main function (3) (after reset) alternate functions lqfp100 lqfp64 tfbga64 ufbga100 lqfp48 or ufqfpn48 free datasheet http:///
pin descriptions stm32l151x6/8/b, stm32l152x6/8/b 40/121 doc id 17659 rev 8 99 63 d4 d3 47 v ss_3 sv ss_3 100 64 e4 c4 48 v dd_3 sv dd_3 1. i = input, o = output, s = supply. 2. ft = 5 v tolerant. 3. function availability depends on the chosen device. for devices having reduced peripher al counts, it is always the lower number of peripheral that is included. for example, if a device has only one spi and two usarts, they will be called spi1 and usart1 & usart2, respectively. refer to table 2 on page 10 . 4. applicable to stm32l152xx devices only. in stm32l151xx devices, th is pin should be connected to v dd . 5. the pc14 and pc15 i/os are only configur ed as osc32_in/osc32_out when the lse oscillator is on (by setting the lseon bit in the rcc_csr register). the lse oscillator pins osc32_in/osc32_out c an be used as general-purpose pc14/pc15 i/os, respectively, when the lse oscillator is off ( af ter reset, the lse oscillator is off ). the lse has priority over the gpio function. for more details, refer to usi ng the osc32_in/osc32_out pins as gpio pc14/pc15 port pins section in the stm32l15xxx reference manual (rm0038). 6. the ph0 and ph1 i/os are only configured as osc_in/osc_out when the hse oscillator is on ( by setting the hseon bit in the rcc_cr register). the hse oscillator pins osc_in/osc_out can be used as general-purpose ph0/ph1 i/os, respectively, when the hse oscillator is off (after reset, the h se oscillator is off ). the h se has priority over the gpio function. 7. unlike in the lqfp64 package, there is no pc3 in the tfbga64 package. the v ref+ functionality is provided instead. table 9. stm32l15xxx pin definitions (continued) pins pin name type (1) i/o level (2) main function (3) (after reset) alternate functions lqfp100 lqfp64 tfbga64 ufbga100 lqfp48 or ufqfpn48 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b pin descriptions doc id 17659 rev 8 41/121 table 10. alternate function input/output port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afoi6 afio7 afio8 afio9 afio10 afio11 afio12 afio13 afio14 afio15 alternate function system tim2 tim3/4 tim9/10/11 i2c1/2 spi1/2 n/a usart 1/2/3 n/a n/a usb lcd n/a n/a ri system boot0 boot0 nrst nrst pa0-wkup1 wkup1 tim2_ch1_ etr usart2_ cts timx_ic1 eventout pa1 tim2_ch2 usart2_ rts [seg0] timx_ic2 eventout pa2 tim2_ch3 tim9_ch1 usart2_ tx [seg1] timx_ic3 eventout pa3 tim2_ch4 tim9_ch2 usart2_ rx [seg2] timx_ic4 eventout pa 4 spi1_nss usart2_ ck timx_ic1 eventout pa 5 tim2_ch1_ etr spi1_sck timx_ic2 eventout pa6 tim3_ch1 tim10_ch1 spi1_m iso [seg3] timx_ic3 eventout pa7 tim3_ch2 tim11_ch1 spi1_m osi [seg4] timx_ic4 eventout pa 8 m c o usart1_ ck [com0] timx_ic1 eventout pa 9 usart1_ tx [com1] timx_ic2 eventout pa 1 0 usart1_ rx [com2] timx_ic3 eventout pa 1 1 spi1_miso usart1_ cts dm timx_ic4 eventout pa 1 2 spi1_mosi usart1_ rts dp timx_ic1 eventout pa13 jtms-swdat timx_ic2 eventout pa14 jtck-swclk timx_ic3 eventout free datasheet http:///
pin descriptions stm32l151x6/8/b, stm32l152x6/8/b 42/121 doc id 17659 rev 8 pa15 jtdi tim2_ch1_ etr spi1_nss seg17 timx_ic4 eventout pb0 tim3_ch3 [seg5] eventout pb1 tim3_ch4 [seg6] eventout pb2 boot1 eventout pb3 jtdo tim2_ch2 spi1_sck [seg7] eventout pb4 jtrst tim3_ch1 spi1_miso [seg8] eventout pb5 tim3_ch2 i2c1_ smba spi1_mosi [seg9] eventout pb6 tim4_ch1 i2c1_scl usart1_ tx eventout pb7 tim4_ch2 i2c1_sda usart1_ rx eventout pb8 tim4_ch3 tim10_ch1* i2c1_scl seg16 eventout pb9 tim4_ch4 tim11_ch1* i2c1_sda [com3] eventout pb10 tim2_ch3 i2c2_scl usart3_ tx seg10 eventout pb11 tim2_ch4 i2c2_sda usart3_ rx seg11 eventout pb12 tim10_ch1 i2c2_ smba spi2_nss usart3_ ck seg12 eventout pb13 tim9_ch1 spi2_sck usart3_ cts seg13 eventout pb14 tim9_ch2 spi2_miso usart3_ rts seg14 eventout pb15 rtc_refin tim11_ch1 spi2_mosi seg15 eventout pc0 seg18 timx_ic1 eventout pc1 seg19 timx_ic2 eventout table 10. alternate function input/output (continued) port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afoi6 afio7 afio8 afio9 afio10 afio11 afio12 afio13 afio14 afio15 alternate function system tim2 tim3/4 tim9/10/11 i2c1/2 spi1/2 n/a usart 1/2/3 n/a n/a usb lcd n/a n/a ri system free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b pin descriptions doc id 17659 rev 8 43/121 pc2 seg20 timx_ic3 eventout pc3 seg21 timx_ic4 eventout pc4 seg22 timx_ic1 eventout pc5 seg23 timx_ic2 eventout pc6 tim3_ch1 seg24 timx_ic3 eventout pc7 tim3_ch2 seg25 timx_ic4 eventout pc8 tim3_ch3 seg26 timx_ic1 eventout pc9 tim3_ch4 seg27 timx_ic2 eventout pc10 usart3_ tx com4 / seg28 / seg40 timx_ic3 eventout pc11 usart3_ rx com5 / seg29 / seg41 timx_ic4 eventout pc12 usart3_ ck com6 / seg30 / seg42 timx_ic1 eventout pc13- wkup2 rtc_tamp1/ rtc_ts/ rtc_out/ wkup2 timx_ic2 eventout pc14- osc32_in osc32_in timx_ic3 eventout pc15- osc32_out osc32_out timx_ic4 eventout pd0 tim9_ch1 spi2_nss timx_ic1 eventout pd1 spi2_sck timx_ic2 eventout table 10. alternate function input/output (continued) port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afoi6 afio7 afio8 afio9 afio10 afio11 afio12 afio13 afio14 afio15 alternate function system tim2 tim3/4 tim9/10/11 i2c1/2 spi1/2 n/a usart 1/2/3 n/a n/a usb lcd n/a n/a ri system free datasheet http:///
pin descriptions stm32l151x6/8/b, stm32l152x6/8/b 44/121 doc id 17659 rev 8 pd2 tim3_etr com7 / seg31 / seg43 timx_ic3 eventout pd3 spi2_miso usart2_ cts timx_ic4 eventout pd4 spi2_mosi usart2_ rts timx_ic1 eventout pd5 usart2_ tx timx_ic2 eventout pd6 usart2_ rx timx_ic3 eventout pd7 tim9_ch2 usart2_ ck timx_ic4 eventout pd8 usart3_ tx seg28 timx_ic1 eventout pd9 usart3_ rx seg29 timx_ic2 eventout pd10 usart3_ ck seg30 timx_ic3 eventout pd11 usart3_ cts seg31 timx_ic4 eventout pd12 tim4_ch1 usart3_ rts seg32 timx_ic1 eventout pd13 tim4_ch2 seg33 timx_ic2 eventout pd14 tim4_ch3 seg34 timx_ic3 eventout pd15 tim4_ch4 seg35 timx_ic4 eventout pe0 tim4_etr tim10_ch1 seg36 timx_ic1 eventout pe1 tim11_ch1 seg37 timx_ic2 eventout pe2 traceck tim3_etr seg 38 timx_ic3 eventout pe3 traced0 tim3_ch1 seg 39 timx_ic4 eventout table 10. alternate function input/output (continued) port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afoi6 afio7 afio8 afio9 afio10 afio11 afio12 afio13 afio14 afio15 alternate function system tim2 tim3/4 tim9/10/11 i2c1/2 spi1/2 n/a usart 1/2/3 n/a n/a usb lcd n/a n/a ri system free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b pin descriptions doc id 17659 rev 8 45/121 pe4 traced1 tim3_ch2 timx_ic1 eventout pe5 traced2 tim9_ch1* timx_ic2 eventout pe6 traced3 / wkup3 tim9_ch2* timx_ic3 eventout pe7 timx_ic4 eventout pe8 timx_ic1 eventout pe9 tim2_ch1_ etr timx_ic2 eventout pe10 tim2_ch2 timx_ic3 eventout pe11 tim2_ch3 timx_ic4 eventout pe12 tim2_ch4 spi1_nss timx_ic1 eventout pe13 spi1_sck timx_ic2 eventout pe14 spi1_miso timx_ic3 eventout pe15 spi1_mosi timx_ic4 eventout ph0-osc_in osc_in ph1- osc_out osc_out ph2 table 10. alternate function input/output (continued) port name digital alternate function number afio0 afio1 afio2 afio3 afio4 afio5 afoi6 afio7 afio8 afio9 afio10 afio11 afio12 afio13 afio14 afio15 alternate function system tim2 tim3/4 tim9/10/11 i2c1/2 spi1/2 n/a usart 1/2/3 n/a n/a usb lcd n/a n/a ri system free datasheet http:///
memory mapping stm32l151x6/8/b, stm32l152x6/8/b 46/121 doc id 17659 rev 8 5 memory mapping the memory map is shown in the following figure. figure 9. memory map reserved 0x4000 0000 0x4000 0400 0x4000 0800 0x4000 0c00 0x4000 2800 0x4000 2c00 0x4000 3000 0x4000 3400 0x4000 3800 0x4000 3c00 0x4000 4400 0x4000 4800 0x4000 4c00 0x4001 0c00 0x4001 1000 0x4001 1400 apb memory space crc 0x4002 3800 tim2 reserved 0x4001 0800 0x4001 2400 0x4001 2800 0x4001 3000 0x4001 3400 0x4001 3800 tim3 tim4 rtc wwdg iwdg reserved spi2 usart2 usart3 syscfg tim9 tim11 rese rve d adc reserved usart1 reserved 0x4002 3400 0x4002 0000 0x4001 3c00 0x4000 5400 0x4000 5800 reserved reserved spi1 i2c1 0x4000 6000 0x4000 5c00 pwr tim10 i2c2 reserved exti reserved rcc flash interface reserved reserved reserved 0x4000 6200 0x4000 7000 0x4000 7400 0x4000 7c00 0x4001 0400 0x4002 3c00 0x4002 4000 0x4002 6000 0x4002 6400 0x6000 0000 0xe010 0000 reserved 0xffff ffff usb reg isters dma 0 1 2 3 4 5 6 7 0x2000 0000 0x4000 0000 0x6000 0000 0x8000 0000 0xa000 0000 0xc000 0000 0xe000 0000 0xffff ffff 0x0000 0000 peripherals sram cortex- m3 internal peripherals 0xe010 0000 ai18200b 512 byte usb tim6 tim7 lcd reserved reserved 0x4000 1000 0x4000 1400 0x4000 2400 0x4000 1c00 dac1 & 2 0x4000 7800 port a port b port c port d port e port h reserved 0x4002 3000 0x4002 1800 0x4002 1400 0x4002 1000 0x4002 0c00 0x4002 0800 0x4002 0400 comp + ri flash memory rese rved rese rved 0x0800 0000 0x0801 ffff 0x1ff0 0000 0x1ff8 001f system memory option bytes 0x1ff0 0fff 0x1ff8 0000 aliased to flash or system memory depending on boot pins 0x0000 0000 rese rved data eeprom rese rved 0x0808 0000 0x0808 0fff 0x4001 0000 reserved reserved free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 47/121 6 electrical characteristics 6.1 parameter conditions unless otherwise specified, all voltages are referenced to v ss . 6.1.1 minimum and maximum values unless otherwise specified the minimum and ma ximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at t a = 25 c and t a = t a max (given by the selected temperature range). data based on characterization results, desi gn simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3 ). 6.1.2 typical values unless otherwise specified, typical data are based on t a = 25 c, v dd = 3.6 v (for the 1.65 v v dd 3.6 v voltage range). they are given only as design guidelines and are not tested. typical adc accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2 ) . 6.1.3 typical curves unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 loading capacitor the loading conditions used for pin parameter measurement are shown in figure 10 . 6.1.5 pin input voltage the input voltage measurement on a pin of the device is described in figure 11 . figure 10. pin loading condition s figure 11. pin input voltage ai17851 c = 50 pf stm32l15xxx pin ai17852 stm32l15xxx pin v in free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 48/121 doc id 17659 rev 8 6.1.6 power supply scheme figure 12. power supply scheme 6.1.7 current con sumption measurement figure 13. current consumption measurement scheme ai15401c v dd1/2/.../5 an alo g: rcs, pll, ... gp i/o s out in kernel logic (cpu, digital & memories) standby-power circuitry (osc32k,rtc, rtc backup registers) wake-up logic 11 100 nf + 1 4.7 f regulator v ss1/2/.../5 v dda v ref+ v ref- v ssa adc level shifter io logic v dd 10 nf + 1 f v ref 10 nf + 1 f v dd ai14126b v dd v dda i dd free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 49/121 6.2 absolute maximum ratings stresses above the absolute maximum ratings listed in ta bl e 11: voltage characteristics , ta bl e 12: current characteristics , and ta b l e 13: thermal characteristics may cause permanent damage to the device. these are stress ratings only and functional operation of the device at these conditions is not implied. exposure to maximum rating conditions for extended periods may affect device reliability. table 11. voltage characteristics symbol ratings min max unit v dd ?v ss external main supply voltage (including v dda and v dd ) (1) 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. ?0.3 4.0 v v in (2) 2. v in maximum must always be respected. refer to table 12 for maximum allowed injected current values. input voltage on five-volt tolerant pin v ss ? 0.3 v dd +4.0 input voltage on any other pin v ss ? 0.3 4.0 | v ddx | variations between different v dd power pins 50 mv |v ssx ? v ss | variations between all different ground pins 50 v esd(hbm) electrostatic discharge voltage (human body model) see section 6.3.10 table 12. current characteristics symbol ratings max. unit i vdd total current into v dd /v dda power lines (source) (1) 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. 80 ma i vss total current out of v ss ground lines (sink) (1) 80 i io output current sunk by any i/o and control pin 25 output current sourced by any i/o and control pin - 25 i inj(pin) (2) 2. negative injection disturbs the analog performance of the device. see note in section 6.3.16 . injected current on five-volt tolerant i/o (3) 3. positive current injection is not possible on these i/os. a negative injection is induced by v in v dd while a negative injection is induced by v in < v ss . i inj(pin) must never be exceeded. refer to table 11: voltage characteristics for the maximum allowed input voltage values. 5 i inj(pin) total injected current (sum of all i/o and control pins) (5) 5. when several inputs are submitted to a current injection, the maximum i inj(pin) is the absolute sum of the positive and negative injected cu rrents (instantaneous values). 25 free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 50/121 doc id 17659 rev 8 6.3 operating conditions 6.3.1 general operating conditions table 13. thermal characteristics symbol ratings value unit t stg storage temperature range ?65 to +150 c t j maximum junction temperature 150 c table 14. general operating conditions symbol parameter co nditions min max unit f hclk internal ahb clock frequency 0 32 mhz f pclk1 internal apb1 clock frequency 0 32 f pclk2 internal apb2 clock frequency 0 32 v dd standard operating voltage bor detector disabled 1.65 3.6 v bor detector enabled, at power on 1.8 3.6 bor detector disabled, after power on 1.65 3.6 v dda (1) 1. when the adc is used, refer to table 54: adc characteristics . analog operating voltage (adc and dac not used) must be the same voltage as v dd (2) 2. it is recommended to power v dd and v dda from the same source. a maximum difference of 300 mv between v dd and v dda can be tolerated during power-up and operation. 1.65 3.6 v analog operating voltage (adc or dac used) 1.8 3.6 p d power dissipation at t a = 85 c (3) 3. if t a is lower, higher p d values are allowed as long as t j does not exceed t j max (see table 68: thermal characteristics on page 114 ). bga100 package 339 mw t a temperature range maximum power dissipation ?40 85 c low power dissipation (4) 4. in low power dissipation state, t a can be extended to this range as long as t j does not exceed t j max (see table 68: thermal characteristics on page 114 ). ?40 105 t j junction temperature range -40 c t a 105 c ?40 105 c free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 51/121 6.3.2 embedded reset and power control block characteristics the parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in ta b l e 14 . table 15. embedded reset and power control block characteristics symbol parameter conditions min typ max unit t vdd (1) v dd rise time rate bor detector enabled 0 s/v bor detector disabled 0 1000 v dd fall time rate bor detector enabled 20 bor detector disabled 0 1000 t rsttempo (1) reset temporization v dd rising, bor enabled 2 3.3 ms v dd rising, bor disabled (2) 0.4 0.7 1.6 v por/pdr power on/power down reset threshold falling edge 1 1.5 1.65 v rising edge 1.3 1.5 1.65 v bor0 brown-out reset threshold 0 falling edge 1.67 1.7 1.74 rising edge 1.69 1.76 1.8 v bor1 brown-out reset threshold 1 falling edge 1.87 1.93 1.97 rising edge 1.96 2.03 2.07 v bor2 brown-out reset threshold 2 falling edge 2.22 2.30 2.35 rising edge 2.31 2.41 2.44 v bor3 brown-out reset threshold 3 falling edge 2.45 2.55 2.60 rising edge 2.54 2.66 2.7 v bor4 brown-out reset threshold 4 falling edge 2.68 2.8 2.85 rising edge 2.78 2.9 2.95 v pvd0 programmable voltage detector threshold 0 falling edge 1.8 1.85 1.88 rising edge 1.88 1.94 1.99 v pvd1 pvd threshold 1 falling edge 1.98 2.04 2.09 rising edge 2.08 2.14 2.18 v pvd2 pvd threshold 2 falling edge 2.20 2.24 2.28 rising edge 2.28 2.34 2.38 v pvd3 pvd threshold 3 falling edge 2.39 2.44 2.48 rising edge 2.47 2.54 2.58 v pvd4 pvd threshold 4 falling edge 2.57 2.64 2.69 rising edge 2.68 2.74 2.79 v pvd5 pvd threshold 5 falling edge 2.77 2.83 2.88 rising edge 2.87 2.94 2.99 free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 52/121 doc id 17659 rev 8 v pvd6 pvd threshold 6 falling edge 2.97 3.05 3.09 v rising edge 3.08 3.15 3.20 v hyst hysteresis voltage bor0 threshold 40 mv all bor and pvd thresholds excepting bor0 100 1. guaranteed by characterisati on, not tested in production. 2. valid for device version without bor at power up. please see option "d" in order ing information scheme for more details. table 15. embedded reset and power control block characteristics (continued) symbol parameter conditions min typ max unit free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 53/121 6.3.3 embedded internal reference voltage the parameters given in ta bl e 16 are based on characterization results, unless otherwise specified. table 16. embedded internal reference voltage symbol parameter conditions min typ max unit v refint out (1) internal reference voltage ? 40 c < t j < +105 c 1.202 1.224 1.242 v i refint internal reference current consumption 1.4 2.3 a t vrefint internal reference startup time 2 3 ms v vref_meas v dda and v ref+ voltage during v refint factory measure 2.99 3 3.01 v a vref_meas accuracy of factory-measured v ref value (2) including uncertainties due to adc and v dda /v ref+ values 5 mv t coeff (3) temperature coefficient ?40 c < t j < +105 c 20 50 ppm/c 0 c < t j < +50 c 20 a coeff (3) long-term stability 1000 hours, t= 25 c 1000 ppm vddcoeff (3) voltage coefficient 3.0 v < v dda < 3.6 v 2000 ppm/v t s_vrefint (3)(4) adc sampling time when reading the internal reference voltage 510 s t adc_buf (3) startup time of reference voltage buffer for adc 10 s i buf_adc (3) consumption of reference voltage buffer for adc 13.5 25 a i vref_out (3) vref_out output current (5) 1a c vref_out (3) vref_out output load 50 pf i lpbuf (3) consumption of reference voltage buffer for vref_out and comp 730 1200 na v refint_div1 (3) 1/4 reference voltage 24 25 26 % v refint v refint_div2 (3) 1/2 reference voltage 49 50 51 v refint_div3 (3) 3/4 reference voltage 74 75 76 1. tested in production; 2. the internal v ref value is individually measured in production and stored in dedicated eeprom bytes. 3. guaranteed by design, not tested in production. 4. shortest sampling time can be determined in the application by multiple iterations. 5. to guarantee less than 1% vref_out deviation. free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 54/121 doc id 17659 rev 8 6.3.4 supply current characteristics the current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, i/o pin loading, device software configuration, operating frequencies, i/o pin switching rate, program location in memory and executed binary code. the current consumption is measured as described in figure 13: current consumption measurement scheme . all run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to dhrystone 2.1 code. maximum current consumption the mcu is placed under the following conditions: v dd = 3.6 v all i/o pins are in input mode with a static value at v dd or v ss (no load) all peripherals are disabled except when explicitly mentioned the flash memory access time is adjusted depending on f hclk frequency and voltage range prefetch and 64-bit access are enabled in configurations with 1 wait state the parameters given in ta bl e 17 , ta bl e 14 and ta bl e 15 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta b l e 14 . table 17. current consumption in run mode, code with data processing running from flash symbol parameter conditions f hclk typ max (1) unit 55 c 85 c 105 c i dd (run from flash) supply current in run mode, code executed from flash f hse = f hclk up to 8 mhz, included f hse = f hclk /2 above 8 mhz (pll on) (2) range 3, v core =1.2 v vos[1:0] = 11 1 mhz 270 400 400 400 a 2 mhz 470 600 600 600 4 mhz 890 1025 1025 1025 range 2, v core =1.5 v vos[1:0] = 10 4 mhz 1 1.3 1.3 1.3 ma 8 mhz 2 2.5 2.5 2.5 16 mhz 3.9 5 5 5 range 1, v core =1.8 v vos[1:0] = 01 8 mhz 2.16 3 3 3 16 mhz 4.8 5.5 5.5 5.5 32 mhz 9.6 11 11 11 hsi clock source (16 mhz) range 2, v core =1.5 v vos[1:0] = 10 16 mhz 4 5 5 5 range 1, v core =1.8 v vos[1:0] = 01 32 mhz 9.4 11 11 11 msi clock, 65 khz range 3, v core =1.2 v vos[1:0] = 11 65 khz 0.05 0.085 0.09 0.1 msi clock, 524 khz 524 khz 0.15 0.185 0.19 0.2 msi clock, 4.2 mhz 4.2 mhz 0.9 1 1 1 1. based on characterization, not tested in production, unless otherwise specified. 2. oscillator bypassed (hsebyp = 1 in rcc_cr register). free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 55/121 table 18. current consumption in run mode, code with data processing running from ram symbol parameter conditions f hclk typ max (1) unit 55 c 85 c 105 c i dd (run from ram) supply current in run mode, code executed from ram, flash switched off f hse = f hclk up to 8 mhz, included f hse = f hclk /2 above 8 mhz (pll on) (2) range 3, v core =1.2 v vos[1:0] = 11 1 mhz 200 300 300 300 a 2 mhz 380 500 500 500 4 mhz 720 860 860 860 (3) range 2, v core =1.5 v vos[1:0] = 10 4 mhz 0.9 1 1 1 ma 8 mhz 1.65 2 2 2 16 mhz 3.2 3.7 3.7 3.7 range 1, v core =1.8 v vos[1:0] = 01 8 mhz 2 2.5 2.5 2.5 16 mhz 4 4.5 4.5 4.5 32 mhz 7.7 8.5 8.5 8.5 hsi clock source (16 mhz) range 2, v core =1.5 v vos[1:0] = 10 16 mhz 3.3 3.8 3.8 3.8 range 1, v core =1.8 v vos[1:0] = 01 32 mhz 7.8 9.2 9.2 9.2 msi clock, 65 khz range 3, v core =1.2 v vos[1:0] = 11 65 khz 40 60 60 80 a msi clock, 524 khz 524 khz 110 140 140 160 msi clock, 4.2 mhz 4.2 mhz 700 800 800 820 1. based on characterization, not tested in production, unless otherwise specified. 2. oscillator bypassed (hsebyp = 1 in rcc_cr register). 3. tested in production. free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 56/121 doc id 17659 rev 8 table 19. current consumption in sleep mode symbol parameter conditions f hclk typ max (1) unit 55 c 85 c 105 c i dd (sleep) supply current in sleep mode, code executed from ram, flash switched off f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (2) range 3, v core =1.2 v vos[1:0] = 11 1 mhz 80 140 140 140 a 2 mhz 150 210 210 210 4 mhz 280 330 330 330 (3) range 2, v core =1.5 v vos[1:0] = 10 4 mhz 280 400 400 400 8 mhz 450 550 550 550 16 mhz 900 1050 1050 1050 range 1, v core =1.8 v vos[1:0] = 01 8 mhz 550 650 650 650 16 mhz 1050 1200 1200 1200 32 mhz 2300 2500 2500 2500 hsi clock source (16 mhz) range 2, v core =1.5 v vos[1:0] = 10 16 mhz 1000 1100 1100 1100 range 1, v core =1.8 v vos[1:0] = 01 32 mhz 2300 2500 2500 2500 msi clock, 65 khz range 3, v core =1.2 v vos[1:0] = 11 65 khz 30 50 50 60 msi clock, 524 khz 524 khz 50 70 70 80 msi clock, 4.2 mhz 4.2 mhz 200 240 240 250 supply current in sleep mode, code executed from flash f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (2) range 3, v core =1.2 v vos[1:0] = 11 1 mhz 80 140 140 140 a 2 mhz 150 210 210 210 4 mhz 290 350 350 350 range 2, v core =1.5 v vos[1:0] = 10 4 mhz 300 400 400 400 8 mhz 500 600 600 600 16 mhz 1000 1100 1100 1100 range 1, v core =1.8 v vos[1:0] = 01 8 mhz 550 650 650 650 16 mhz 1050 1200 1200 1200 32 mhz 2300 2500 2500 2500 hsi clock source (16 mhz) range 2, v core =1.5 v vos[1:0] = 10 16 mhz 1000 1100 1100 1100 range 1, v core =1.8 v vos[1:0] = 01 32 mhz 2300 2500 2500 2500 i dd (sleep) supply current in sleep mode, code executed from flash msi clock, 65 khz range 3, v core =1.2v vos[1:0] = 11 65 khz 40 70 70 80 a msi clock, 524 khz 524 khz 60 90 90 100 msi clock, 4.2 mhz 4.2 mhz 210 250 250 260 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 57/121 1. based on characterization, not tested in production, unless otherwise specified. 2. oscillator bypassed (hseb yp = 1 in rcc_cr register) 3. tested in production table 20. current consumption in low power run mode symbol parameter conditions typ max (1) unit i dd (lp run) supply current in low power run mode all peripherals off, code executed from ram, flash switched off, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz t a = -40 c to 25 c 9 12 a t a = 85 c 17.5 24 t a = 105 c 31 46 msi clock, 65 khz f hclk = 65 khz t a = -40 c to 25 c 14 17 t a = 85 c 22 29 t a = 105 c 35 51 msi clock, 131 khz f hclk = 131 khz t a = -40 c to 25 c 37 42 t a = 55 c 37 42 t a = 85 c 37 42 t a = 105 c 48 65 all peripherals off, code executed from flash, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz t a = -40 c to 25 c 24 32 t a = 85 c 33 42 t a = 105 c 48 64 msi clock, 65 khz f hclk = 65 khz t a = -40 c to 25 c 31 40 t a = 85 c 40 48 t a = 105 c 54 70 msi clock, 131 khz f hclk = 131 khz t a = -40 c to 25 c 48 58 t a = 55 c 54 63 t a = 85 c 56 65 t a = 105 c 70 90 i dd max (lp run) (2) max allowed current in low power run mode v dd from 1.65 v to 3.6 v 200 1. based on characterization, not tested in production, unless otherwise specified. 2. this limitation is related to the co nsumption of the cpu core and the periphe rals that are powered by the regulator. consumption of the i/os is not included in this limitation. free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 58/121 doc id 17659 rev 8 table 21. current consumption in low power sleep mode symbol parameter conditions typ max (1) 1. based on characterization, not tested in production, unless otherwise specified. unit i dd (lp sleep) supply current in low power sleep mode all peripherals off, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz flash off t a = -40 c to 25 c 4.4 a msi clock, 65 khz f hclk = 32 khz flash on t a = -40 c to 25 c 17.5 25 t a = 85 c 22 27 t a = 105 c 31 39 msi clock, 65 khz f hclk = 65 khz, flash on t a = -40 c to 25 c 18 26 t a = 85 c 23 28 t a = 105 c 31 40 msi clock, 131 khz f hclk = 131 khz, flash on t a = -40 c to 25 c 22 30 t a = 55 c 24 32 t a = 85 c 26 34 t a = 105 c 34 45 tim9 and usart1 enabled, flash on, v dd from 1.65 v to 3.6 v msi clock, 65 khz f hclk = 32 khz t a = -40 c to 25 c 17.5 25 t a = 85 c 22 27 t a = 105 c 31 39 msi clock, 65 khz f hclk = 65 khz t a = -40 c to 25 c 18 26 t a = 85 c 23 28 t a = 105 c 31 40 msi clock, 131 khz f hclk = 131 khz t a = -40 c to 25 c 22 30 t a = 55 c 24 32 t a = 85 c 26 34 t a = 105 c 34 45 i dd max (lp sleep) max allowed current in low power sleep mode v dd from 1.65 v to 3.6 v 200 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 59/121 table 22. typical and maximum current consumptions in stop mode symbol parameter conditions typ (1) max (1)(2) unit i dd (stop with rtc) supply current in stop mode with rtc enabled rtc clocked by lsi, regulator in lp mode, hsi and hse off (no independent watchdog) lcd off t a = -40c to 25c v dd = 1.8 v 1.2 2.75 a t a = -40c to 25c 1.4 4 t a = 55c 2.6 6 t a = 85c 4.8 10 t a = 105c 10.2 23 lcd on (static duty) (3) t a = -40c to 25c 3.3 6 t a = 55c 4.5 8 t a = 85c 6.6 12 t a = 105c 13.6 27 lcd on (1/8 duty) (4) t a = -40c to 25c 7.7 10 t a = 55c 8.6 12 t a = 85c 10.7 16 t a = 105c 19.8 40 rtc clocked by lse external clock (32.768 khz), regulator in lp mode, hsi and hse off (no independent watchdog) lcd off t a = -40c to 25c 1.6 4 t a = 55c 2.7 6 t a = 85c 4.8 10 t a = 105c 10.3 23 lcd on (static duty) (3) t a = -40c to 25c 3.6 6 t a = 55c 4.6 8 t a = 85c 6.7 12 t a = 105c 10.9 23 lcd on (1/8 duty) (4) t a = -40c to 25c 7.6 10 t a = 55c 8.6 12 t a = 85c 10.7 16 t a = 105c 19.8 40 rtc clocked by lse (no independent watchdog) (5) lcd off t a = -40c to 25c v dd = 1.8 v 1.45 t a = -40c to 25c v dd = 3.0 v 1.9 t a = -40c to 25c v dd = 3.6 v 2.2 free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 60/121 doc id 17659 rev 8 i dd (stop) supply current in stop mode ( rtc disabled) regulator in lp mode, hsi and hse off, independent watchdog and lsi enabled t a = -40c to 25c 1.1 2.2 a regulator in lp mode, lsi, hsi and hse off (no independent watchdog) t a = -40c to 25c 0.5 0.9 t a = 55c 1.9 5 t a = 85c 3.7 8 t a = 105c 8.9 20 (6) i dd (wu from stop) rms (root mean square) supply current during wakeup time when exiting from stop mode msi = 4.2 mhz v dd = 3.0 v t a = -40c to 25c 2 ma msi = 1.05 mhz 1.45 msi = 65 khz (7) 1.45 1. the typical values are given for v dd = 3.0 v and max values are given for v dd = 3.6 v, unless otherwise specified. 2. based on characterization, not tested in production, unless otherwise specified 3. lcd enabled with external vlcd, static duty, divisi on ratio = 256, all pixels active, no lcd connected 4. lcd enabled with external vlcd, 1/8 duty, 1/3 bias, division ratio = 64, all pixe ls active, no lcd connected. 5. based on characterization done with a 32.768 khz crystal (mc306-g-06q-32.768, manufacturer jfvny) with two 6.8pf loading capacitors. 6. tested in production 7. when msi = 64 khz, the rms current is measured over the first 15 s following the wakeup event. for the remaining time of the wakeup period, the current is similar to the run mode current. table 22. typical and maximum current consumptions in stop mode symbol parameter conditions typ (1) max (1)(2) unit free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 61/121 table 23. typical and maximum current consumptions in standby mode symbol parameter conditions typ (1) max (1)(2) unit i dd (standby with rtc) supply current in standby mode with rtc enabled rtc clocked by lsi (no independent watchdog) t a = -40 c to 25 c v dd = 1.8 v 0.9 t a = -40 c to 25 c 1.1 1.8 a t a = 55 c 1.42 2.5 t a = 85 c 1.87 3 t a = 105 c 2.78 5 rtc clocked by lse (no independent watchdog) (3) t a = -40 c to 25 c v dd = 1.8 v 1 t a = -40 c to 25 c 1.33 2.9 t a = 55 c 1.59 3.4 t a = 85 c 2.01 4.3 t a = 105 c 3.27 6.3 i dd (standby) supply current in standby mode with rtc disabled independent watchdog and lsi enabled t a = -40 c to 25 c 1.1 1.6 independent watchdog and lsi off t a = -40 c to 25 c 0.3 0.55 t a = 55 c 0.5 0.8 t a = 85 c 1 1.7 t a = 105 c 2.5 4 (4) i dd (wu from standby) rms supply current during wakeup time when exiting from standby mode v dd = 3.0 v t a = -40 c to 25 c 1a 1. the typical values are given for v dd = 3.0 v and max values are given for v dd = 3.6 v, unless otherwise specified. 2. based on characterization, not tested in production, unless otherwise specified. 3. based on characterization done with a 32.768 khz crystal (m c306-g-06q-32.768, manufacturer jfvny) with two 6.8pf loading capacitors. 4. tested in production. free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 62/121 doc id 17659 rev 8 wakeup time from low power mode the wakeup times given in the following table are measured with the msi rc oscillator. the clock source used to wake up the device depends on the current operating mode: sleep mode: the clock source is the clock that was set before entering sleep mode stop mode: the clock source is the msi os cillator in the range configured before entering stop mode standby mode: the clock so urce is the msi oscillator running at 2.1 mhz all timings are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta bl e 14 . table 24. typical and maximum timings in low power modes symbol parameter conditions typ max (1) 1. based on characterization, not tested in production, unless otherwise specified unit t wusleep wakeup from sleep mode f hclk = 32 mhz 0.36 s t wusleep_lp wakeup from low power sleep mode f hclk = 262 khz f hclk = 262 khz flash enabled 32 f hclk = 262 khz flash switched off 34 t wustop wakeup from stop mode, regulator in run mode f hclk = f msi = 4.2 mhz 8.2 wakeup from stop mode, regulator in low power mode f hclk = f msi = 4.2 mhz voltage range 1 and 2 8.2 9.3 f hclk = f msi = 4.2 mhz voltage range 3 7.8 11.2 f hclk = f msi = 2.1 mhz 10 12 f hclk = f msi = 1.05 mhz 15.5 20 f hclk = f msi = 524 khz 29 35 f hclk = f msi = 262 khz 53 63 f hclk = f msi = 131 khz 105 118 f hclk = msi = 65 khz 210 237 t wustdby wakeup from standby mode fwu bit = 1 f hclk = msi = 2.1 mhz 50 103 wakeup from standby mode fwu bit = 0 f hclk = msi = 2.1 mhz 2.5 3.2 ms free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 63/121 on-chip peripheral current consumption the current consumption of the on-chip peripherals is given in the following table. the mcu is placed under the following conditions: all i/o pins are in input mode with a static value at v dd or v ss (no load) all peripherals are disabled unless otherwise mentioned the given value is calculated by measuring the current consumption ? with all peripherals clocked off ? with only one peripheral clocked on table 25. peripheral current consumption (1) peripheral typical consumption, v dd = 3.0 v, t a = 25 c unit range 1, v core = 1.8 v vos[1:0] = 01 range 2, v core = 1.5 v vos[1:0] = 10 range 3, v core = 1.2 v vos[1:0] = 11 low power sleep and run apb1 tim2 13 10.5 8 10.5 a/mhz (f hclk ) tim3 14 12 9 12 tim4 12.5 10.5 8 11 tim6 5.5 4.5 3.5 4.5 tim7 5.5 5 3.5 4.5 lcd 5.553.55 wwdg 4 3.5 2.5 3.5 spi2 5.5 5 4 5 usart2 9 8 5.5 8.5 usart3 10.5 9 6 8 i2c1 8.5 7 5.5 7.5 i2c2 8.5 7 5.5 6.5 usb 12.5 10 6.5 10 pwr 4.5 4 3 3.5 dac 9 7.5 6 7 comp 4.5 4 3.5 4.5 free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 64/121 doc id 17659 rev 8 apb2 syscfg & ri 32.522.5 a/mhz (f hclk ) tim9 9 7.5 6 7 tim10 6.5 5.5 4.5 5.5 tim11 7 6 4.5 5.5 adc (2) 11.5 9.5 8 9 spi1 5 4.5 3 4 usart197.567.5 ahb gpioa 5 4.5 3.5 4 gpiob 5 4.5 3.5 4.5 gpioc 5 4.5 3.5 4.5 gpiod 5 4.5 3.5 4.5 gpioe 5 4.5 3.5 4.5 gpioh4433.5 crc 1 0.5 0.5 0.5 flash 13 11.5 9 18.5 dma1 12 10 8 10.5 all enabled 166 138 106 130 i dd (rtc) 0.47 a i dd (lcd) 3.1 i dd (adc) (3) 1450 i dd (dac) (4) 340 i dd (comp1) 0.16 i dd (comp2) slow mode 2 fast mode 5 i dd (pvd / bor) (5) 2.6 i dd (iwdg) 0.25 1. data based on differential i dd measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: f hclk = 32 mhz (range 1), f hclk = 16 mhz (range 2), f hclk = 4 mhz (range 3), f hclk = 64khz (low power run/sleep), f apb1 = f hclk , f apb2 = f hclk , default prescaler value for each peripheral. the cpu is in sleep mo de in both cases. no i/o pins toggling. not tested in production. 2. hsi oscillator is off for this measure. 3. data based on a differential i dd measurement between adc in reset configuration and continuous adc conversion (hsi consumption not included). table 25. peripheral current consumption (1) (continued) peripheral typical consumption, v dd = 3.0 v, t a = 25 c unit range 1, v core = 1.8 v vos[1:0] = 01 range 2, v core = 1.5 v vos[1:0] = 10 range 3, v core = 1.2 v vos[1:0] = 11 low power sleep and run free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 65/121 6.3.5 external cloc k source characteristics high-speed external user clock generated from an external source 4. data based on a differential i dd measurement between dac in reset configuration and continuous dac conversion of v dd /2. dac is in buffered mode, output is left floating. 5. including supply current of internal reference voltage. table 26. high-speed external user clock characteristics (1) 1. guaranteed by design, not tested in production. symbol parameter conditions min typ max unit f hse_ext user external clock source frequency 1832mhz v hseh osc_in input pin high level voltage 0.7v dd v dd v v hsel osc_in input pin low level voltage v ss 0.3v dd t w(hse) t w(hse) osc_in high or low time 12 ns t r(hse) t f(hse) osc_in rise or fall time 20 c in(hse) osc_in input capacitance 2.6 pf ducy (hse) duty cycle 45 55 % i l osc_in input leakage current v ss v in v d d 1 a free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 66/121 doc id 17659 rev 8 low-speed external user clock generated from an external source the characteristics given in the following table result from tests performed using a low- speed external clock source, and under ambien t temperature and supply voltage conditions summarized in ta b l e 14 . figure 14. low-speed external clock source ac timing diagram table 27. low-speed external user clock characteristics (1) 1. guaranteed by design, not tested in production symbol parameter conditions min typ max unit f lse_ext user external clock source frequency 1 32.768 1000 khz v lseh osc32_in input pin high level voltage 0.7v dd v dd v v lsel osc32_in input pin low level voltage v ss 0.3v dd t w(lse) t w(lse) osc32_in high or low time 465 - - ns t r(lse) t f(lse) osc32_in rise or fall time - - 10 c in(lse) osc32_in input capacitance - 0.6 - pf ducy (lse) duty cycle 45 - 55 % i l osc32_in input leakage current v ss v in v dd --1a ai18233 osc32_in exter nal stm32lxx clock source v lseh t f(lse) t w(lse) i l 90% 10% t lse t t r(lse) t w(lse) f lse_ext v lsel free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 67/121 figure 15. high-speed external clock source ac timing diagram high-speed external clock generated from a crystal/ceramic resonator the high-speed external (hse) clock can be supplied with a 1 to 24 mhz crystal/ceramic resonator oscillato r. all the information given in this paragraph are based on characterization results obtained with typical external components specified in ta bl e 28 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion a nd startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). ai18232 os c _i n exter nal stm32lxx clock source v hseh t f(hse) t w(hse) i l 90% 10% t hse t t r(hse) t w(hse) f hse_ext v hsel free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 68/121 doc id 17659 rev 8 for c l1 and c l2 , it is recommended to use high-quality external ceramic capacitors in the 5 pf to 25 pf range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see figure 16 ). c l1 and c l2 are usually the same size. the crystal manufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . pcb and mcu pin capacitance must be included (10 pf can be used as a rough estimate of the comb ined pin and board capacitance) when sizing c l1 and c l2 . refer to the application note an28 67 ?oscillator design guide for st microcontrollers? available fr om the st website www.st.com. table 28. hse 1-24 mhz oscillator characteristics (1)(2) 1. resonator characte ristics given by the crystal/ ceramic resonator manufacturer. 2. based on characterization results, not tested in production. symbol parameter conditions min typ max unit f osc_in oscillator frequency 1 24 mhz r f feedback resistor 200 k c recommended load capacitance versus equivalent serial resistance of the crystal (r s ) (3) 3. the relatively low value of the rf resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and t he bias condition change. however, it is recommended to take this point into account if the mcu is used in tough humidity conditions. r s = 30 20 pf i hse hse driving current v dd = 3.3 v, v in = v ss with 30 pf load 3ma i dd(hse) hse oscillator power consumption c = 20 pf f osc = 16 mhz 2.5 (startup) 0.7 (stabilized) ma c = 10 pf f osc = 16 mhz 2.5 (startup) 0.46 (stabilized) g m oscillator transconductance startup 3.5 ma /v t su(hse) (4) 4. t su(hse) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 mhz oscillation is reached. this value is measured for a standard crystal resonat or and it can vary significantly with the crystal manufacturer. startup time v dd is stabilized 1 ms free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 69/121 figure 16. hse oscillator circuit diagram 1. r ext value depends on the cr ystal characteristics. low-speed external clock generated from a crystal/ceramic resonator the low-speed external (lse) clock can be supplied with a 32.768 khz crystal/ceramic resonator oscillato r. all the information given in this paragraph are based on characterization results obtained with typical external components specified in ta bl e 29 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion a nd startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). table 29. lse oscillator characteristics (f lse = 32.768 khz) (1) 1. based on characterization , not tested in production. symbol parameter conditions min typ max unit f lse low speed external oscillator frequency 32.768 khz r f feedback resistor 1.2 m c (2) 2. refer to the note and caution paragraphs below the table, and to the application note an2867 ?oscillator design guide for st microcontrollers?. recommended load capacitance versus equivalent serial resistance of the crystal (r s ) (3) 3. the oscillator selection can be optimized in terms of supply current using an hi gh quality resonator with small r s value for example msiv-tin32.768khz. refer to crystal manufacturer for more details; r s = 30 k 8pf i lse lse driving current v dd = 3.3 v, v in = v ss 1.1 a i dd (lse) lse oscillator current consumption v dd = 1.8 v 450 na v dd = 3.0 v 600 v dd = 3.6v 750 g m oscillator transconductance 3 a/v t su(lse) (4) 4. t su(lse) is the startup time measured from the mom ent it is enabled (by software) to a stabilized 32.768 khz oscillation is reached. th is value is measured for a standard cr ystal resonator and it can vary significantly with t he crystal manufacturer. startup time v dd is stabilized 1 s osc_out osc_in f hse to core c l1 c l2 r f stm32 resonator consumption control g m r m c m l m c o resonator ai18235 free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 70/121 doc id 17659 rev 8 note: for c l1 and c l2 , it is recommended to use high-quality ceramic capacitors in the 5 pf to 15 pf range selected to match the requirements of the crystal or resonator (see figure 17 ). c l1 and c l2, are usually the same size. the crystal ma nufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . load capacitance c l has the following formula: c l = c l1 x c l2 / ( c l1 + c l2 ) + c stray where c stray is the pin capacitance and board or trace pcb-related capacitance. typically, it is between 2 pf and 7 pf. caution: to avoid exceeding the maximum value of c l1 and c l2 (15 pf) it is strongly recommended to use a resonator with a load capacitance c l 7 pf. never use a resonator with a load capacitance of 12.5 pf. example: if you choose a resonator with a load capacitance of c l = 6 pf and c stray = 2 pf, then c l1 = c l2 = 8 pf. figure 17. typical application with a 32.768 khz crystal ai17853 osc32_ou t osc32_in f lse c l1 r f stm32l15xxx 32.768 kh z resonator c l2 resonator with integrated capacitors bias controlled gain free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 71/121 6.3.6 internal clock source characteristics the parameters given in ta bl e 30 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta b l e 14 . high-speed internal (hsi) rc oscillator low-speed internal (lsi) rc oscillator table 30. hsi oscillator characteristics symbol parameter conditions min typ max unit f hsi frequency v dd = 3.0 v 16 mhz trim (1)(2) 1. the trimming step differs depending on the trimming c ode. it is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xe0). hsi user-trimmed resolution trimming code is not a multiple of 16 0.4 0.7 % trimming code is a multiple of 16 1.5 % acc hsi (2) 2. based on characterization , not tested in production. accuracy of the factory-calibrated hsi oscillator v dda = 3.0 v, t a = 25 c -1 (3) 3. tested in production. 1 (3) % v dda = 3.0 v, t a = 0 to 55 c -1.5 1.5 % v dda = 3.0 v, t a = -10 to 70 c -2 2 % v dda = 3.0 v, t a = -10 to 85 c -2.5 2 % v dda = 3.0 v, t a = -10 to 105 c -4 2 % v dda = 1.65 v to 3.6 v t a = -40 to 105 c -4 3 % t su(hsi) (2) hsi oscillator startup time 3.7 6 s i dd(hsi) (2) hsi oscillator power consumption 100 140 a table 31. lsi oscillator characteristics symbol parameter min typ max unit f lsi (1) 1. tested in production. lsi frequency 26 38 56 khz d lsi (2) 2. this is a deviation for an individual part, once the in itial frequency has been measured. lsi oscillator frequency drift 0c t a 85c -10 4 % t su(lsi) (3) 3. guaranteed by design, not tested in production. lsi oscillator startup time 200 s i dd(lsi) (3) lsi oscillator power consumption 400 510 na free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 72/121 doc id 17659 rev 8 multi-speed internal (msi) rc oscillator table 32. msi oscillator characteristics symbol parameter condition typ max unit f msi frequency after factory calibration, done at v dd = 3.3 v and t a = 25 c msi range 0 65.5 khz msi range 1 131 msi range 2 262 msi range 3 524 msi range 4 1.05 mhz msi range 5 2.1 msi range 6 4.2 acc msi frequency error after factory calibration 0.5 % d temp(msi) (1) msi oscillator frequency drift 0 c t a 85 c 3% d volt(msi) (1) msi oscillator frequency drift 1.65 v v dd 3.6 v, t a = 25 c 2.5 %/v i dd(msi) (2) msi oscillator power consumption msi range 0 0.75 a msi range 1 1 msi range 2 1.5 msi range 3 2.5 msi range 4 4.5 msi range 5 8 msi range 6 15 t su(msi) msi oscillator startup time msi range 0 30 s msi range 1 20 msi range 2 15 msi range 3 10 msi range 4 6 msi range 5 5 msi range 6, voltage range 1 and 2 3.5 msi range 6, voltage range 3 5 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 73/121 6.3.7 pll characteristics the parameters given in ta bl e 33 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta b l e 14 . t stab(msi) (2) msi oscillator stabilization time msi range 0 40 s msi range 1 20 msi range 2 10 msi range 3 4 msi range 4 2.5 msi range 5 2 msi range 6, voltage range 1 and 2 2 msi range 3, voltage range 3 3 f over(msi) msi oscillator frequency overshoot any range to range 5 4 mhz any range to range 6 6 1. this is a deviation for an individual part, once the in itial frequency has been measured. 2. based on characterization , not tested in production. table 32. msi oscillator characteristics (continued) symbol parameter condition typ max unit table 33. pll characteristics symbol parameter value unit min typ max (1) 1. based on characterization , not tested in production. f pll_in pll input clock (2) 2. take care of using the appropriate multiplier factors so as to have pll input clock values compatible with the range defined by f pll_out . 224mhz pll input clock duty cycle 45 55 % f pll_out pll output clock 2 32 mhz t lock worst case pll lock time pll input = 2 mhz pll vco = 96 mhz 100 130 s jitter cycle-to-cycle jitter 600 ps i dda (pll) current consumption on v dda 220 450 a i dd (pll) current consumption on v dd 120 150 free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 74/121 doc id 17659 rev 8 6.3.8 memory characteristics the characteristics are given at t a = -40 to 105 c unless otherwise specified. ram memory table 34. ram and hardware registers flash memory and data eeprom symbol parameter conditions min typ max unit vrm data retention mode (1) 1. minimum supply voltage without losing data stored in ram (in stop mode or under reset) or in hardware registers (only in stop mode). stop mode (or reset) 1.65 v table 35. flash memory and data eeprom characteristics symbol parameter conditions min typ max (1) 1. guaranteed by design, not tested in production. unit v dd operating voltage read / write / erase 1.65 3.6 v t prog programming time for word or half-page erasing 3.28 3.94 ms programming 3.28 3.94 i dd average current during whole programme/erase operation t a = 25 c, v dd = 3.6 v 300 a maximum current (peak) during programme/erase operation 1.5 2.5 ma free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 75/121 6.3.9 emc characteristics susceptibility tests ar e performed on a sample basis during device characterization. functional ems (electromagnetic susceptibility) while a simple application is executed on the device (toggling 2 leds through i/o ports). the device is stressed by two electromagnetic events until a failure occurs. the failure is indicated by the leds: electrostatic discharge (esd) (positive and negative) is applied to all device pins until a functional disturbance occurs. this test is compliant with the iec 61000-4-2 standard. ftb : a burst of fast transient voltage (positive and negative) is applied to v dd and v ss through a 100 pf capacitor, until a functional disturbance occurs. this test is compliant with the iec 61000-4-4 standard. a device reset allows normal operations to be resumed. the test results are given in ta b l e 37 . they are based on the ems levels and classes defined in application note an1709. table 36. flash memory, data eeprom endurance and data retention symbol parameter conditions value unit min (1) 1. based on characterization not tested in production. typ max n cyc (2) cycling (erase / write ) program memory t a = -40c to 105 c 10 kcycles cycling (erase / write ) eeprom data memory 300 t ret (2) 2. characterization is done according to jedec jesd22-a117. data retention (pro gram memory) after 10 kcycles at t a = 85 c t ret = +85 c 30 years data retention (eepr om data memory) after 300 kcycles at t a = 85 c 30 data retention (pro gram memory) after 10 kcycles at t a = 105 c t ret = +105 c 10 data retention (eepr om data memory) after 300 kcycles at t a = 105 c 10 table 37. ems characteristics symbol parameter conditions level/ class v fesd voltage limits to be applied on any i/o pin to induce a functional disturbance v dd = 3.3 v, lqfp100, t a = +25 c, f hclk = 32 mhz conforms to iec 61000-4-2 2b v eftb fast transient voltage burst limits to be applied through 100 pf on v dd and v ss pins to induce a functional disturbance v dd = 3.3 v, lqfp100, t a = +25 c, f hclk = 32 mhz conforms to iec 61000-4-4 4a free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 76/121 doc id 17659 rev 8 designing hardened software to avoid noise problems emc characterization and optimization are performed at component level with a typical application environment and simplified mcu software. it should be noted that good emc performance is highly dependent on the user application and the software in particular. therefore it is recommended that the user applies emc software optimization and prequalification tests in relation with the emc level requested for his application. software recommendations the software flowchart must include the management of runaway conditions such as: corrupted program counter unexpected reset critical data corruption (control registers...) prequalification trials most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forci ng a low state on the nrst pin or the oscillator pins for 1 second. to complete these trials, esd stress can be applied directly on the device, over the range of specification values. when unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note an1015). electromagnetic interference (emi) the electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 leds through the i/o ports). this emission test is compliant with iec 61967-2 standard which specifies the test board and the pin loading. table 38. emi characteristics symbol parameter conditions monitored frequency band max vs. frequency range unit 4 mhz voltage range 3 16 mhz voltage range 2 32 mhz voltage range 1 s emi peak level v dd = 3.3 v, t a = 25 c, lqfp100 package compliant with iec 61967-2 0.1 to 30 mhz 3 -6 -5 dbv 30 to 130 mhz 18 4 -7 130 mhz to 1ghz 15 5 -7 sae emi level 2.5 2 1 - free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 77/121 6.3.10 absolute maximum rati ngs (electrical sensitivity) based on three different tests (esd, lu) using specific measurement methods, the device is stressed in order to determine its perfor mance in terms of electrical sensitivity. electrostatic discharge (esd) electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. the sample size depends on the number of supply pins in the device (3 parts (n+1) supply pins). this test conforms to the jesd22-a114/c101 standard. static latch-up two complementary static tests are required on six parts to assess the latch-up performance: a supply overvoltage is applied to each power supply pin a current injection is applied to each input, output and configurable i/o pin these tests are compliant with eia/jesd 78a ic latch-up standard. 6.3.11 i/o current in jection characteristics as a general rule, current injection to the i/o pins, due to external voltage below v ss or above v dd (for standard pins) should be avoided during normal product operation. however, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection acci dentally happens, susc eptibility tests are pe rformed on a sample basis during device characterization. table 39. esd absolute maximum ratings symbol ratings conditions class maximum value (1) 1. based on characterization results, not tested in production. unit v esd(hbm) electrostatic discharge voltage (human body model) t a = +25 c, conforming to jesd22-a114 22000 v v esd(cdm) electrostatic discharge voltage (charge device model) t a = +25 c, conforming to jesd22-c101 ii 500 table 40. electrical sensitivities symbol parameter conditions class lu static latch-up class t a = +105 c conforming to jesd78a ii level a free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 78/121 doc id 17659 rev 8 functional susceptibility to i/o current injection while a simple application is executed on the device, the device is stressed by injecting current into the i/o pins programmed in floating input mode. while current is injected into the i/o pin, one at a time, the device is checked for functional failures. the failure is indicated by an out of range parameter: adc error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, lcd levels, etc.). the test results are give n in the following table. table 41. i/o current injection susceptibility symbol description functional su sceptibility unit negative injection positive injection i inj injected current on true open-drain pins -5 +0 ma injected current on all 5 v tolerant (ft) pins -5 +0 injected current on any other pin -5 +5 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 79/121 6.3.12 i/o port characteristics general input/output characteristics unless otherwise specified, the parameters given in ta bl e 42 are derived from tests performed under conditions summarized in ta b l e 14 . all i/os are cmos and ttl compliant. table 42. i/o static characteristics symbol parameter conditions min typ max unit v il input low level voltage ttl ports 2.7 v v dd 3.6 v v ss - 0.3 0.8 v v ih standard i/o input high level voltage 2 (1) v dd +0.3 ft (2) i/o input high level voltage 5.5v v il input low level voltage cmos ports 1.65 v v dd 3.6 v ?0.3 0.3v dd (3) v ih standard i/o input high level voltage cmos ports 1.65 v v dd 3.6 v 0.7 v dd (3)(4) v dd +0.3 ft (5) i/o input high level voltage cmos ports 1.65 v v dd 2.0 v 5.25 cmos ports 2.0 v v dd 3.6 v 5.5 v hys standard i/o schmitt trigger voltage hysteresis (6) 10% v dd (7) i lkg input leakage current (8)(3) v ss v in v dd i/os with lcd 50 na v ss v in v dd i/os with analog switches 50 v ss v in v dd i/os with analog switches and lcd 50 v ss v in v dd i/os with usb tbd v ss v in v dd standard i/os 50 r pu weak pull-up equivalent resistor (9)(3) v in = v ss 30 45 60 k r pd weak pull-down equivalent resistor (9)(3) v in = v dd 30 45 60 k c io i/o pin capacitance 5 pf 1. guaranteed by design. 2. ft = 5v tolerant. to sustain a voltage higher than v dd +0.5 the internal pull-up/pull- down resistors must be disabled. 3. tested in production 4. 0.7v dd for 5v-tolerant receiver 5. ft = five-volt tolerant. 6. hysteresis voltage between schmitt trigger switching levels. based on characteriza tion, not tested in production. 7. with a minimum of 200 mv. based on characterization, not tested in production. 8. the max. value may be exceeded if negative current is injected on adjacent pins. free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 80/121 doc id 17659 rev 8 output driving current the gpios (general purpose input/outputs) can sink or source up to 8 ma, and sink or source up to 20 ma (with the non-standard v ol /v oh specifications given in ta bl e 43 . in the user application, the number of i/o pins which can drive current must be limited to respect the absolute maxi mum rating specified in section 6.2 : the sum of the currents sourced by all the i/os on v dd, plus the maximum run consumption of the mcu sourced on v dd, cannot exceed the absolute maximum rating i vdd (see ta bl e 1 2 ). the sum of the currents sunk by all the i/os on v ss plus the maximum run consumption of the mcu sunk on v ss cannot exceed the absolute maximum rating i vss (see table 12 ). output voltage levels unless otherwise specified, the parameters given in ta bl e 43 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta bl e 14 . all i/os are cmos and ttl compliant. 9. pull-up and pull-down resistor s are designed with a true resistance in seri es with a switchable pmos/nmos. this mos/nmos contribution to the series resistance is minimum (~10% order) . table 43. output voltage characteristics symbol parameter conditions min max unit v ol (1)(2) 1. the i io current sunk by the device must always resp ect the absolute maximum rating specified in table 12 and the sum of i io (i/o ports and control pins) must not exceed i vss . 2. tested in production. output low level voltage for an i/o pin when 8 pins are sunk at same time i io = +8 ma 2.7 v < v dd < 3.6 v 0.4 v v oh (3)(2) 3. the i io current sourced by the device must always re spect the absolute maximum rating specified in table 12 and the sum of i io (i/o ports and control pins) must not exceed i vdd . output high level voltage for an i/o pin when 8 pins are sourced at same time 2.4 v ol (1)(4) output low level voltage for an i/o pin when 8 pins are sunk at same time i io =+ 4 ma 1.65 v < v dd < 2.7 v 0.45 v oh (3)(4) output high level voltage for an i/o pin when 8 pins are sourced at same time v dd -0.45 v ol (1)(4) 4. based on characterization data, not tested in production. output low level voltage for an i/o pin when 4 pins are sunk at same time i io = +20 ma 2.7 v < v dd < 3.6 v 1.3 v oh (3)(4) output high level voltage for an i/o pin when 4 pins are sourced at same time v dd -1.3 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 81/121 input/output ac characteristics the definition and values of input/output ac characteristics are given in figure 18 and ta bl e 44 , respectively. unless otherwise specified, the parameters given in ta bl e 44 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta bl e 14 . table 44. i/o ac characteristics (1) ospeedrx [1:0] bit value (1) symbol parameter conditions min max (2) unit 00 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 400 khz c l = 50 pf, v dd = 1.65 v to 2.7 v - 400 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 625 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 625 01 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 2 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 1 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 125 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 250 10 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 10 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 2 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 25 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 125 11 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 50 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 8 t f(io)out t r(io)out output rise and fall time c l = 30 pf, v dd = 2.7 v to 3.6 v - 5 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 30 -t extipw pulse width of external signals detected by the exti controller 8- 1. the i/o speed is configured using the ospeedrx[1:0] bits. refer to the stm32l15x xx reference manual for a description of gpio port configuration register. 2. guaranteed by design. not tested in production. 3. the maximum frequency is defined in figure 18 . free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 82/121 doc id 17659 rev 8 figure 18. i/o ac characteristics definition 6.3.13 nrst pin characteristics the nrst pin input driver uses cmos technology. unless otherwise specified, the parameters given in ta bl e 45 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in ta bl e 14 . ai14131b 10% 90% 50% t r( i o)out external output on 50pf maximum frequency is achieved if (t r + t f ) 2/3)t and if the duty cycle is (45-55%) 10 % 50% 90% when loaded by 50 pf t t f(i o)out table 45. nrst pin characteristics symbol parameter conditions min typ max unit v il(nrst) (1) 1. guaranteed by design, not tested in production. nrst input low level voltage v ss 0.8 v v ih(nrst) (1) nrst input high level voltage 1.4 v dd v ol(nrst) (1) nrst output low level voltage i ol = 2 ma 2.7 v < v dd < 3.6 v 0.4 i ol = 1.5 ma 1.65 v < v dd < 2.7 v v hys(nrst) (1) nrst schmitt trigger voltage hysteresis 10%v dd (2) 2. 200 mv minimum value mv r pu weak pull-up equivalent resistor (3) 3. the pull-up is designed with a true resistance in series with a switchable pmos. this pmos contribution to the series resistance is around 10%. v in = v ss 30 45 60 k v f(nrst) (1) nrst input filtered pulse 50 ns v nf(nrst) (1) nrst input not filtered pulse 350 ns free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 83/121 figure 19. recommended nrst pin protection 1. the reset network protects t he device against par asitic resets. 2. the user must ensure that the level on the nrst pin can go below the v il(nrst) max level specified in table 45 . otherwise the reset will not be taken into account by the device. 6.3.14 tim time r characteristics the parameters given in the following table are guaranteed by design. refer to section 6.3.11: i/o current injection characteristics for details on the input/output alternate function characteristics (output co mpare, input capture, external clock, pwm output). ai17854 stm32l15xxx r pu nrst (2) v dd filter internal reset 0.1 f external reset circuit (1) table 46. timx (1) characteristics 1. timx is used as a general term to refer to the tim2, tim3 and tim4 timers. symbol parameter conditions min max unit t res(tim) timer resolution time 1 t timxclk f timxclk = 32 mhz 31.25 ns f ext timer external clock frequency on ch1 to ch4 0 f timxclk /2 mhz f timxclk = 32 mhz 0 16 mhz res tim timer resolution 16 bit t counter 16-bit counter clock period when internal clock is selected (timer?s prescaler disabled) 1 65536 t timxclk f timxclk = 32 mhz 0.0312 2048 s t max_count maximum possible count 65536 65536 t timxclk f timxclk = 32 mhz 134.2 s free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 84/121 doc id 17659 rev 8 6.3.15 communications interfaces i 2 c interface characteristics the line i 2 c interface meets the requirements of the standard i 2 c communication protocol with the following restrictions: sda and scl are not ?true? open-drain i/o pins. when configured as open-drain, the pmos connected between the i/o pin and v dd is disabled, but is still present. the i 2 c characteristics are described in ta b l e 47 . refer also to section 6.3.11: i/o current injection characteristics for more details on the input/output alternate function characteristics (sda and scl) . table 47. i 2 c characteristics symbol parameter standard mode i 2 c (1) 1. guaranteed by design, not tested in production. fast mode i 2 c (1) (2) 2. f pclk1 must be at least 2 mhz to achieve standard mode i 2 c frequencies. it must be at least 4 mhz to achieve fast mode i2c frequencies. it must be a multiple of 10 mhz to reach the 400 khz maximum i2c fast mode clock. unit min max min max t w(scll) scl clock low time 4.7 1.3 s t w(sclh) scl clock high time 4.0 0.6 t su(sda) sda setup time 250 100 ns t h(sda) sda data hold time 0 0 900 (3) 3. the maximum data hold time has only to be met if t he interface does not stretch the low period of scl signal. t r(sda) t r(scl) sda and scl rise time 1000 20 + 0.1c b 300 t f(sda) t f(scl) sda and scl fall time 300 300 t h(sta) start condition hold time 4.0 0.6 s t su(sta) repeated start condition setup time 4.7 0.6 t su(sto) stop condition setup time 4.0 0.6 s t w(sto:sta) stop to start condition time (bus free) 4.7 1.3 s c b capacitive load for each bus line 400 400 pf free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 85/121 figure 20. i 2 c bus ac waveforms and measurement circuit 1. measurement points are done at cmos levels: 0.3v dd and 0.7v dd . table 48. scl frequency (f pclk1 = 32 mhz, v dd = 3.3 v) (1)(2) 1. r p = external pull-up resistance, f scl = i 2 c speed. 2. for speeds around 200 khz, the tole rance on the achieved speed is of 5%. for other speed ranges, the tolerance on the achieved speed is 2%. these variations depend on the accuracy of the external components used to design the application. f scl (khz) i2c_ccr value r p = 4.7 k 400 0x801b 300 0x8024 200 0x8035 100 0x00a0 50 0x0140 20 0x0320 ai17855 start sd a 100 4.7k i 2 c bus 4.7k 100 v dd v dd stm32l15xxx sda scl t f(sda) t r(sda) scl t h(sta) t w(sckh) t w(sckl) t su(sda) t r(sck) t f(sck) t h(sda) s tart repeated start t su(sta) t su(sto) stop t su(sta:sto) free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 86/121 doc id 17659 rev 8 spi characteristics unless otherwise specified, the parameters given in the following table are derived from tests performed under ambient temperature, f pclkx frequency and v dd supply voltage conditions summarized in ta bl e 14 . refer to section 6.3.11: i/o current injection characteristics for more details on the input/output alternate function characteristics (nss, sck, mosi, miso). table 49. spi characteristics (1) 1. the characteristics above ar e given for voltage range 1. symbol parameter conditions min max (2) 2. based on characterization , not tested in production. unit f sck 1/t c(sck) spi clock frequency master mode - 16 mhz slave mode - 16 slave transmitter - 12 (3) 3. the maximum spi clock frequency in slave transmitte r mode is given for an spi slave input clock duty cycle (ducy(sck)) ranging between 40 to 60%. t r(sck) (2) t f(sck) (2) spi clock rise and fall time capacitive load: c = 30 pf - 6 ns ducy(sck) spi slave input clock duty cycle slave mode 30 70 % t su(nss) nss setup time slave mode 4t hclk - ns t h(nss) nss hold time slave mode 2t hclk - t w(sckh) (2) t w(sckl) (2) sck high and low time master mode t sck /2 ? 5 t sck /2+ 3 t su(mi) (2) data input setup time master mode 5 - t su(si) (2) slave mode 6 - t h(mi) (2) data input hold time master mode 5 - t h(si) (2) slave mode 5 - t a(so) (4) 4. min time is for the minimum time to drive the output and max time is for the maximum time to validate the data. data output access time slave mode 0 3t hclk t v(so) (2) data output valid time slave mode - 33 t v(mo) (2) data output valid time master mode - 6.5 t h(so) (2) data output hold time slave mode 17 - t h(mo) (2) master mode 0.5 - free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 87/121 figure 21. spi timing diagram - slave mode and cpha = 0 figure 22. spi timing diagram - slave mode and cpha = 1 (1) 1. measurement points are done at cmos levels: 0.3v dd and 0.7v dd . ai14134c sck input cpha= 0 mosi input miso out p ut cpha= 0 ms b o u t msb in bi t6 ou t lsb in lsb out cpol=0 cpol=1 bit1 in nss input t su(nss) t c(sck) t h(nss) t a(so) t w(sckh) t w(sckl) t v(so) t h(so) t r(sck) t f(sck) t dis(so) t su(si) t h(si) ai14135 sck input cpha=1 mosi input miso out p ut cpha=1 ms b o u t msb in bi t6 ou t lsb in lsb out cpol=0 cpol=1 bit1 in t su(nss) t c(sck) t h(nss) t a(so) t w(sckh) t w(sckl) t v(so) t h(so) t r(sck) t f(sck) t dis(so) t su(si) t h(si) nss input free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 88/121 doc id 17659 rev 8 figure 23. spi timing diagram - master mode (1) 1. measurement points are done at cmos levels: 0.3v dd and 0.7v dd . usb characteristics the usb interface is usb-if certified (full speed). table 50. usb startup time symbol parameter max unit t startup (1) 1. guaranteed by design, not tested in production. usb transceiver startup time 1 s ai14136 sck input cpha= 0 mosi output miso inp ut cpha= 0 ms bin m sb out bi t6 in lsb out lsb in cpol=0 cpol=1 b i t1 out nss input t c(sck) t w(sckh) t w(sckl) t r(sck) t f(sck) t h(mi) high sck input cpha=1 cpha=1 cpol=0 cpol=1 t su(mi) t v(mo) t h(mo) free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 89/121 figure 24. usb timings: definition of data signal rise and fall time table 51. usb dc electrical characteristics symbol parameter conditions min. (1) 1. all the voltages are measured from the local ground potential. max. (1) unit input levels v dd usb operating voltage (2) 2. to be compliant with the usb 2.0 full speed electric al specification, the usb_ dp (d+) pin should be pulled up with a 1.5 k resistor to a 3.0-to-3.6 v voltage range. 3.0 3.6 v v di (3) 3. guaranteed by characterizati on, not tested in production. differential input sensitivity i(usb_dp, usb_dm) 0.2 v v cm (3) differential common mode range includes v di range 0.8 2.5 v se (3) single ended receiver threshold 1.3 2.0 output levels v ol (4) 4. tested in production. static output level low r l of 1.5 k to 3.6 v (5) 5. r l is the load connected on the usb drivers. 0.3 v v oh (4) static output level high r l of 15 k to v ss (5) 2.8 3.6 table 52. usb: full speed el ectrical characteristics driver characteristics (1) 1. guaranteed by design, not tested in production. symbol parameter con ditions min max unit t r rise time (2) 2. measured from 10% to 90% of the data signal. for more detailed informations, please refer to usb specification - chapt er 7 (version 2.0). c l = 50 pf 420ns t f fall time (2) c l = 50 pf 4 20 ns t rfm rise/ fall time matching t r /t f 90 110 % v crs output signal crossover voltage 1.3 2.0 v ai14137 t f differen tial data l ines v ss v cr s t r crossover points free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 90/121 doc id 17659 rev 8 6.3.16 12-bit adc characteristics unless otherwise specified, the parameters given in ta bl e 54 are guaranteed by design. table 53. adc clock frequency symbol parameter conditions min max unit f adc adc clock frequency voltage range 1 & 2 2.4 v v dda 3.6 v v ref+ = v dda 0.480 16 mhz v ref+ < v dda v ref+ > 2.4 v 8 v ref+ < v dda v ref+ 2.4 v 4 1.8 v v dda 2.4 v v ref+ = v dda 8 v ref+ < v dda 4 voltage range 3 4 table 54. adc characteristics symbol parameter conditions min typ max unit v dda power supply 1.8 3.6 v v ref+ positive reference voltage 2.4 v v dda 3.6 v v ref+ must be below or equal to v dda 1.8 (1) v dda v ref- negative reference voltage v ssa i vdda current on the v dda input pin 1000 1450 a i vref (2) current on the v ref input pin peak 400 700 average 450 v ain conversion voltage range (3) 0 (4) v ref+ v f s 12-bit sampling rate direct channels 0.03 1 msps multiplexed channels 0.03 0.76 10-bit sampling rate direct channels 0.03 1.07 msps multiplexed channels 0.03 0.8 8-bit sampling rate direct channels 0.03 1.23 msps multiplexed channels 0.03 0.89 6-bit sampling rate direct channels 0.03 1.45 msps multiplexed channels 0.03 1 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 91/121 t s sampling time direct channels 2.4 v v dda 3.6 v 0.25 s multiplexed channels 2.4 v v dda 3.6 v 0.56 direct channels 1.8 v v dda 2.4 v 0.56 multiplexed channels 1.8 v v dda 2.4 v 1 4 384 1/f adc t conv total conversion time (including sampling time) f adc = 16 mhz 1 24.75 s 4 to 384 (sampling phase) +12 (successive approximation) 1/f adc c adc internal sample and hold capacitor direct channels 16 pf multiplexed channels f trig external trigger frequency regular sequencer 12-bit conversions tconv+1 1/f adc 6/8/10-bit conversions tconv 1/f adc f trig external trigger frequency injected sequencer 12-bit conversions tconv+2 1/f adc 6/8/10-bit conversions tconv+1 1/f adc r ain external input impedance 50 k t lat injection trigger conversion latency f adc = 16 mhz 219 281 ns 3.5 4.5 1/f adc t latr regular trigger conversion latency f adc = 16 mhz 156 219 ns 2.5 3.5 1/f adc t stab power-up time 3.5 s 1. the vref+ input can be grounded iif neither the adc no r the dac are used (this allows to shut down an external voltage reference). 2. the current consumption through vref is composed of two parameters: - one constant (max 300 a) - one variable (max 400 a), only during sampling time + 2 first conversion pulses. so, peak consumption is 300+400 = 700 a and average c onsumption is 300 + [(4 sampling + 2) /16] x 400 = 450 a at 1msps 3. v ref+ can be internally connected to v dda and v ref- can be internally connected to v ssa , depending on the package. refer to section 4: pin descriptions for further details. 4. v ssa or v ref- must be tied to ground. table 54. adc characte ristics (c ontinued) symbol parameter conditions min typ max unit free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 92/121 doc id 17659 rev 8 table 55. adc accuracy (1)(2) symbol parameter test conditions min (3) typ max (3) unit et total unadjusted error 2.4 v v dda 3.6 v 2.4 v v ref+ 3.6 v f adc = 8 mhz, r ain = 50 t a = -40 to 105 c -24 lsb eo offset error - 1 2 eg gain error - 1.5 3.5 ed differential linearity error - 1 2 el integral linearity error - 1.7 3 enob effective number of bits 2.4 v v dda 3.6 v v dda = v ref+ f adc = 16 mhz, r ain = 50 t a = -40 to 105 c 1 khz f input 100 khz 9.2 10 - bits sinad signal-to-noise and distorsion ratio 57.5 62 - db snr signal-to-noise ratio 57.5 62 - thd total harmonic distorsion -74 -75 - et total unadjusted error 2.4 v v dda 3.6 v 1.8 v v ref+ 2.4 v f adc = 4 mhz, r ain = 50 t a = -40 to 105 c -46.5 lsb eo offset error - 2 4 eg gain error - 4 6 ed differential linearity error - 1 2 el integral linearity error - 1.5 3 et total unadjusted error 1.8 v v dda 2.4 v 1.8 v v ref+ 2.4 v f adc = 4 mhz, r ain = 50 t a = -40 to 105 c 23 lsb eo offset error 1 1.5 eg gain error 1.5 2 ed differential linearity error 1 2 el integral linearity error 1 1.5 1. adc dc accuracy values are m easured after internal calibration. 2. adc accuracy vs. negative injection current: injecting a negativ e current on any analog input pins should be avoided as this significantly reduces the ac curacy of the conversion bei ng performed on another analog input. it is recommended to add a schottky diode (pin to ground) to analog pins which may potentially inject negative currents. any positive injection current with in the limits specified for i inj(pin) and i inj(pin) in section 6.3.11 does not affect the adc accuracy. 3. based on characterization, not tested in production. free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 93/121 figure 25. adc accura cy characteristics figure 26. typical connection diagram using the adc 1. refer to table 56: r ain max for f adc = 16 mhz for the value of rain and table 54: adc characteristics for the value of cadc 2. c parasitic represents the capacitance of the pcb (dependent on soldering and pcb layout quality) plus the pad capacitance (roughly 7 pf). a high c parasitic value will downgrade conversion accuracy. to remedy this, f adc should be reduced. e o e g 1lsb ideal (1) example of an actual transfer curve (2) the ideal transfer curve (3) end point correlation line e t =total unadjusted error: maximum deviation between the actual and the ideal transfer curves. e o =offset error: deviation between the first actual transition and the first ideal one. e g =gain error: deviation between the last ideal transition and the last actual one. e d =differential linearity error: maximum deviation between actual steps and the ideal one. e l =integral linearity error: maximum deviation between any actual transition and the end point correlation line. 4095 4094 4093 5 4 3 2 1 0 7 6 1234567 4093 4094 4095 4096 (1) (2) e t e d e l (3) v dda v ssa ai14395b v ref+ 4096 (or depending on package)] v dda 4096 [1lsb ideal = ai17856c stm32l15xxx vdd ainx il 50 na 0.6 v vt r ain (1) c parasitic vain 0.6 v vt 12-bit converter c adc (1) sample and hold adc converter free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 94/121 doc id 17659 rev 8 figure 27. maximum dynamic current consumption on v ref+ supply pin during adc conversion general pcb design guidelines power supply decoupling should be performed as shown in figure 28 or figure 29 , depending on whether v ref+ is connected to v dda or not. the 10 nf capacitors should be ceramic (good quality). they should be placed as close as possible to the chip. adc clock sampling (n cycles) conversion (12 cycles) i ref+ 300a 700a table 56. r ain max for f adc = 16 mhz (1) ts (cycles) ts (s) r ain max (kohm) multiplexed channels direct channels 2.4 v < v dda < 3.6 v 1.8 v < v dda < 2.4 v 2.4 v < v dda < 3.3 v 1.8 v < v dda < 2.4 v 4 0.25 not allowed not allowed 0.7 not allowed 9 0.5625 0.8 not allowed 2.0 1.0 16 1 2.0 0.8 4.0 3.0 24 1.5 3.0 1.8 6.0 4.5 48 3 6.8 4.0 15.0 10.0 96 6 15.0 10.0 30.0 20.0 192 12 32.0 25.0 50.0 40.0 384 24 50.0 50.0 50.0 50.0 1. guaranteed by design, not tested in production. free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 95/121 figure 28. power supply and reference decoupling (v ref+ not connected to v dda ) 1. v ref+ and v ref? inputs are available only on 100-pin packages. figure 29. power supply and reference decoupling (v ref+ connected to v dda ) 1. v ref+ and v ref? inputs are available only on 100-pin packages. v ref+ (see note 1) stm32l15xxx v dda v ssa /v refC (see note 1) 1 f // 100 nf 1 f // 100 nf ai17857b v ref+ /v dda stm32l15xxx 1 f // 100 nf v refC /v ssa ai17858a (see note 1) (see note 1) free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 96/121 doc id 17659 rev 8 6.3.17 dac elect rical specifications data guaranteed by design, not tested in production, unless otherwise specified. table 57. dac characteristics symbol parameter conditions min typ max unit v dda analog supply voltage 1.8 3.6 v v ref+ reference supply voltage v ref+ must always be below v dda 1.8 3.6 v ref- lower reference voltage v ssa i ddvref+ (1) current consumption on v ref+ supply v ref+ = 3.3 v no load, middle code (0x800) 130 220 a no load, worst code (0x000) 220 350 i dda (1) current consumption on v dda supply v dda = 3.3 v no load, middle code (0x800) 210 320 no load, worst code (0xf1c) 320 520 r l (2) resistive load dac output buffer on 5k c l (2) capacitive load 50 pf r o output impedance dac output buffer off 6 8 10 k v dac_out voltage on dac_out output dac output buffer on 0.2 v dda ? 0.2 v dac output buffer off 0.5 v ref+ ? 1lsb mv dnl (1) differential non linearity (3) c l 50 pf, r l 5 k dac output buffer on 1.5 3 lsb no r load , c l 50 pf dac output buffer off 1.5 3 inl (1) integral non linearity (4) c l 50 pf, r l 5 k dac output buffer on 24 no r load , c l 50 pf dac output buffer off 24 offset (1) offset error at code 0x800 (5) c l 50 pf, r l 5 k dac output buffer on 10 25 no r load , c l 50 pf dac output buffer off 5 8 offset1 (1) offset error at code 0x001 (6) no r load , c l 50 pf dac output buffer off 1.5 5 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 97/121 doffset/dt (1) offset error temperature coefficient (code 0x800) v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer off -20 -10 0 v/c v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer on 020 50 gain (1) gain error (7) c l 50 pf, r l 5 k dac output buffer on +0.1 / -0.2% +0.2 / -0.5% % no r load , c l 50 pf dac output buffer off +0 / -0.2% +0 / -0.4% dgain/dt (1) gain error temperature coefficient v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer off -10 -2 0 v/c v dda = 3.3v v ref+ = 3.0v t a = 0 to 50 c dac output buffer on -40 -8 0 tue (1) total unadjusted error c l 50 pf, r l 5 k dac output buffer on 12 30 lsb no r load , c l 50 pf dac output buffer off 812 t settling settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till dac_out reaches final value 1lsb c l 50 pf, r l 5 k 712s update rate max frequency for a correct dac_out change (95% of final value) with 1 lsb variation in the input code c l 50 pf, r l 5 k 1 msps t wakeup wakeup time from off state (setting the enx bit in the dac control register) (8) c l 50 pf, r l 5 k 915s psrr+ v dda supply rejection ratio (static dc measurement) c l 50 pf, r l 5 k -60 -35 db 1. data based on characterization results. 2. connected between dac_out and v ssa . 3. difference between two consecutive codes - 1 lsb. table 57. dac characteristics (continued) symbol parameter conditions min typ max unit free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 98/121 doc id 17659 rev 8 figure 30. 12-bit buffered /non-buffered dac 1. the dac integrates an output buffer that can be used to r educe the output impedance and to dr ive external loads directly without the use of an external operational amplifier. the buffer can be bypassed by configuring the boffx bit in the dac_cr register. 6.3.18 temperature sen sor characteristics 4. difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 4095. 5. difference between the value measured at code (0x800) and the ideal value = v ref+ /2. 6. difference between the value measured at code (0x001) and the ideal value. 7. difference between ideal slope of the transfer functi on and measured slope computed from code 0x000 and 0xfff when buffer is off, and from code giving 0.2 v and (v dda ? 0.2) v when buffer is on . 8. in buffered mode, the output can over shoot above the final value for low input code (starting from min value). r load c load b u ffered/non- bu ffered dac dac_outx b u ffer(1) 12- b it digit a l to a n a log converter a i17157v2 table 58. t emperature sensor characteristics symbol parameter min typ max unit t l (1) 1. guaranteed by characterizati on, not tested in production. v sense linearity with temperature 1 2c avg_slope (1) average slope 1.48 1.61 1.75 mv/c v 110 voltage at 110c 5c (2) 2. measured at v dd = 3 v 10 mv. v110 adc conversion result is stored in the tsense_cal2 byte. 612 626.8 641.5 mv i dda (temp) (3) current consumption 3.4 6 a t start (3) 3. guaranteed by design, not tested in production. startup time 10 s t s_temp (4)(3) 4. shortest sampling time can be determined in the application by multiple iterations. adc sampling time when reading the temperature 10 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 99/121 6.3.19 comparator table 59. comparator 1 characteristics symbol parameter conditions min (1) typ max (1) 1. based on characterization , not tested in production. unit v dda analog supply voltage 1.65 3.6 v r 400k r 400k value 400 k r 10k r 10k value 10 v in comparator 1 input voltage range 0.6 v dda v t start comparator startup time 7 10 s td propagation delay (2) 2. the delay is characterized for 100 mv input step wi th 10 mv overdrive on the inverting input, the non- inverting input set to the reference. 310 voffset comparator offset 3 10 mv d voffset /dt comparator offset variation in worst voltage stress conditions v dda = 3.6 v v in+ = 0 v v in- = v refint t a = 25 c 0 1.5 10 mv/1000 h i comp1 current consumption (3) 3. comparator consumption only. inte rnal reference voltage not included. 160 260 na free datasheet http:///
electrical characteristics stm32l151x6/8/b, stm32l152x6/8/b 100/121 doc id 17659 rev 8 table 60. comparator 2 characteristics symbol parameter conditions min typ max (1) 1. based on characterization , not tested in production. unit v dda analog supply voltage 1.65 3.6 v v in comparator 2 input voltage range 0 v dda v t start comparator startup time fast mode 15 20 s slow mode 20 25 t d slow propagation delay (2) in slow mode 2. the delay is characterized for 100 mv input step wi th 10 mv overdrive on the inverting input, the non- inverting input set to the reference. 1.65 v v dda 2.7 v 1.8 3.5 2.7 v v dda 3.6 v 2.5 6 t d fast propagation delay (2) in fast mode 1.65 v v dda 2.7 v 0.8 2 2.7 v v dda 3.6 v 1.2 4 v offset comparator offset error 4 20 mv dthreshold/ dt threshold voltage temperature coefficient v dda = 3.3v t a = 0 to 50 c v- = v ref+ , 3/4 v ref+ , 1/2 v ref+ , 1/4 v ref+ . 15 30 ppm /c i comp2 current consumption (3) 3. comparator consumption only. inte rnal reference voltage (necessary for comparator operation) is not included. fast mode 3.5 5 a slow mode 0.5 2 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b electrical characteristics doc id 17659 rev 8 101/121 6.3.20 lcd control ler (stm32l152xx only) the stm32l152xx embeds a built-in step-up converter to provide a constant lcd reference voltage independently from the v dd voltage. an external capacitor c ext must be connected to the v lcd pin to decouple this converter. table 61. lcd controller characteristics symbol parameter min typ max unit v lcd lcd external voltage 3.6 v v lcd0 lcd internal reference voltage 0 2.6 v lcd1 lcd internal reference voltage 1 2.73 v lcd2 lcd internal reference voltage 2 2.86 v lcd3 lcd internal reference voltage 3 2.98 v lcd4 lcd internal reference voltage 4 3.12 v lcd5 lcd internal reference voltage 5 3.26 v lcd6 lcd internal reference voltage 6 3.4 v lcd7 lcd internal reference voltage 7 3.55 c ext v lcd external capacitance 0.1 2 f i lcd (1) 1. lcd enabled with 3 v internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no lcd connected supply current at v dd = 2.2 v 3.3 a supply current at v dd = 3.0 v 3.1 r htot (2) 2. guaranteed by design, not tested in production. low drive resistive network overall value 5.28 6.6 7.92 m r l (2) high drive resistive network total value 192 240 288 k v 44 segment/common highest level voltage v lcd v v 34 segment/common 3/4 level voltage 3/4 v lcd v v 23 segment/common 2/3 level voltage 2/3 v lcd v 12 segment/common 1/2 level voltage 1/2 v lcd v 13 segment/common 1/3 level voltage 1/3 v lcd v 14 segment/common 1/4 level voltage 1/4 v lcd v 0 segment/common lowest level voltage 0 vxx (3) 3. based on characterization , not tested in production. segment/common level voltage error t a = -40 to 85 c 50 mv free datasheet http:///
package characteristics stm32l151x6/8/b, stm32l152x6/8/b 102/121 doc id 17659 rev 8 7 package characteristics 7.1 package mechanical data in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specification s, grade definitions and product status are available at: www.st.com . ecopack ? is an st trademark. free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b package characteristics doc id 17659 rev 8 103/121 figure 31. lqfp100, 14 x 14 mm, 100-pin low-profile quad flat package outline 1. drawing is not to scale. e identification pin 1 gauge plane 0.25 mm seating plane d d1 d3 e3 e1 e k ccc c c 1 25 26 100 76 75 51 50 1l_me_v3 a2 a a1 l1 l c b a1 free datasheet http:///
package characteristics stm32l151x6/8/b, stm32l152x6/8/b 104/121 doc id 17659 rev 8 figure 32. recommended footprint 1. dimensions are in millimeters. table 62. lqpf100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 1.600 0.0630 a1 0.050 0.150 0.0020 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 d 15.800 16.000 16.200 0.6220 0.6299 0.6378 d1 13.800 14.000 14.200 0.5433 0.5512 0.5591 d3 12.000 0.4724 e 15.800 16.000 16.200 0.6220 0.6299 0.6378 e1 13.800 14.000 14.200 0.5433 0.5512 0.5591 e3 12.000 0.4724 e 0.500 0.0197 l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 1.000 0.0394 k 0.0 3.5 7.0 0.0 3.5 7.0 ccc 0.080 0.0031 75 51 50 76 0.5 0.3 16.7 14.3 100 26 12.3 25 1.2 16.7 1 ai14906 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b package characteristics doc id 17659 rev 8 105/121 figure 33. lqfp64, 10 x 10 mm, 64-pin low-profile quad flat package outline 1. drawing is not to scale. a1 a2 a seating plane ccc c b c c a1 l l1 k gauge plane 0.25 mm identification pin 1 d d1 d3 e 1 16 17 32 33 48 49 64 e3 e1 e 5w_me_v2 free datasheet http:///
package characteristics stm32l151x6/8/b, stm32l152x6/8/b 106/121 doc id 17659 rev 8 figure 34. recommended footprint 1. dimensions are in millimeters. table 63. lqfp64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 1.600 0.0630 a1 0.050 0.150 0.0020 0.0059 a2 1.400 1.350 1.450 0.0551 0.0531 0.0571 b 0.220 0.170 0.270 0.0087 0.0067 0.0106 c 0.090 0.200 0.0035 0.0079 d 12.000 11.800 12.200 0.4724 0.4646 0.4803 d1 10.000 9.800 10. 200 0.3937 0.3858 0.4016 d3 7.500 0.2953 e 12.000 11.800 12.200 0.4724 0.4646 0.4803 e1 10.000 9.800 10. 200 0.3937 0.3858 0.4016 e3 7.500 0.2953 e 0.500 0.0197 l 0.600 0.450 0.750 0.0236 0.0177 0.0295 l1 1.000 0.0394 ccc 0.080 0.0031 k 3.5 0.0 7.0 3.5 0.0 7.0 48 32 49 64 17 116 1.2 0.3 33 10.3 12.7 10.3 0.5 7.8 12.7 ai14909 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b package characteristics doc id 17659 rev 8 107/121 figure 35. lqfp48, 7 x 7 mm, 48-pin low-profile quad flat package outline 1. drawing is not to scale. 5b_me_v2 pin 1 identification ccc c c d3 0.25 mm gauge plane b a1 a a2 c a1 l1 l d d1 e3 e1 e e 12 1 13 24 25 36 37 48 seating plane k free datasheet http:///
package characteristics stm32l151x6/8/b, stm32l152x6/8/b 108/121 doc id 17659 rev 8 figure 36. recommended footprint 1. dimensions are in millimeters. table 64. lqfp48, 7 x 7 mm, 48-pin low-pr ofile quad flat package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 1.600 0.0630 a1 0.050 0.150 0.0020 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 0.0079 d 8.800 9.000 9.200 0.3465 0.3543 0.3622 d1 6.800 7.000 7.200 0.2677 0.2756 0.2835 d3 5.500 0.2165 e 8.800 9.000 9.200 0.3465 0.3543 0.3622 e1 6.800 7.000 7.200 0.2677 0.2756 0.2835 e3 5.500 0.2165 e 0.500 0.0197 l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 1.000 0.0394 k 03.57 03.57 ccc 0.080 0.0031 9.70 5.80 7.30 12 24 0.20 7.30 1 37 36 1.20 5.80 9.70 0.30 25 1.20 0.50 ai14911b 13 48 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b package characteristics doc id 17659 rev 8 109/121 figure 37. ufqfpn48 7 x 7 mm, 0.5 mm pitch, package outline 1. drawing is not to scale. 1. all leads/pads should also be soldered to the pcb to improve the lead/pad solder joint life. 1. there is an exposed die pad on the underside of t he ufqfpn package. it is recommended to connect and solder this back-side pad to pcb ground. a0b9_me_v3 d pin 1 indentifier laser marking area ee d y d2 e2 exposed pad area z 1 48 detail z r 0.125 typ. 1 48 l c 0.500x45 pin1 corner a seating plane a1 b e ddd detail y t free datasheet http:///
package characteristics stm32l151x6/8/b, stm32l152x6/8/b 110/121 doc id 17659 rev 8 figure 38. recommended footprint 1. dimensions are in millimeters. table 65. ufqfpn48 7 x 7 mm, 0.5 mm pitch, package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 0.500 0.550 0.600 0.0197 0.0217 0.0236 a1 0.000 0.020 0.050 0.0000 0.0008 0.0020 d 6.900 7.000 7.100 0.2717 0.2756 0.2795 e 6.900 7.000 7.100 0.2717 0.2756 0.2795 l 0.300 0.400 0.500 0.0118 0.0157 0.0197 t 0.152 0.0060 b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e 0.500 0.0197 7.30 7.30 0.20 0.30 0.55 0.50 5.80 6.20 6.20 5.60 5.60 5.80 0.75 ai15697 48 1 12 13 24 25 36 37 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b package characteristics doc id 17659 rev 8 111/121 figure 39. ufbga100 - 7 x 7 x 0.6 mm, 0.5 mm pitch, package outline 1. drawing is not to scale. table 66. ufbga100 - 7 x 7 x 0.6 mm, 0.5 mm pitch, package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 0.530 0.460 0.600 0.0209 0.0181 0.0236 a1 0.080 0.050 0.110 0.0031 0.0020 0.0043 a2 0.450 0.400 0.500 0.0177 0.0157 0.0197 a3 0.130 0.080 0.180 0.0051 0.0031 0.0071 a4 0.320 0.270 0.370 0.0126 0.0106 0.0146 b 0.250 0.200 0.300 0.0098 0.0079 0.0118 d 7.000 6.950 7.050 0.2756 0.2736 0.2776 d1 5.500 5.450 5.550 0.2165 0.2146 0.2185 e 7.000 6.950 7.050 0.2756 0.2736 0.2776 e1 5.500 5.450 5.550 0.2165 0.2146 0.2185 e 0.500 0.0197 f 0.750 0.700 0.800 0.0295 0.0276 0.0315 ddd 0.100 0.0039 eee 0.150 0.0059 fff 0.050 0.0020 a0c2_me_v2 seating plane a1 e f f d m ?b (100 balls) a e top view bottom view 1 12 a1 ball identifier e a a2 y x z ddd z d1 e1 eee z y x fff ? ? m m z a3 a4 a1 ball index area free datasheet http:///
package characteristics stm32l151x6/8/b, stm32l152x6/8/b 112/121 doc id 17659 rev 8 figure 40. tfbga64 - 8.0x8.0x1.2 mm, 0.5 mm pitch, package outline 1. drawing is not to scale. table 67. tfbga64 - 8.0x8.0x1.2 mm, 0.5 mm pitch, package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 1.200 0.0472 a1 0.150 0.0059 a2 0.200 0.0079 a4 0.600 0.0236 b 0.300 0.250 0.350 0.0118 0.0098 0.0138 d 5.000 4.850 5.150 0.1969 0.1909 0.2028 d1 3.500 0.1378 e 5.000 4.850 5.150 0.1969 0.1909 0.2028 e1 3.500 0.1378 e 0.500 0.0197 f 0.750 0.0295 ddd 0.080 0.0031 eee 0.150 0.0059 fff 0.050 0.0020 r8_me_v3 seating plane a1 ef f d h ?b (64 balls) a e top view bottom view 1 8 e a y x z ddd z d1 e1 eee z y x fff ? ? m m z a2 a4 a1 ball identifier a1 ball index area free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b package characteristics doc id 17659 rev 8 113/121 figure 41. recommended pcb design rules for pads (0.5 mm pitch bga) 1. non solder mask defined (nsmd) pads are recommended 2. 4 to 6 mils solder paste screen printing process pitch 0.5 mm d pad 0.27 mm dsm 0.35 mm typ (depends on the soldermask registration tolerance) solder paste 0.27 mm aperture diameter dpad dsm ai15495 free datasheet http:///
package characteristics stm32l151x6/8/b, stm32l152x6/8/b 114/121 doc id 17659 rev 8 7.2 thermal characteristics the maximum chip-junction temperature, t j max, in degrees celsius, may be calculated using the following equation: t j max = t a max + (p d max ja ) where: t a max is the maximum ambient temperature in c, ja is the package junction-to-ambient thermal resistance, in c/w, p d max is the sum of p int max and p i/o max (p d max = p int max + p i/o max), p int max is the product of i dd and v dd , expressed in watts. this is the maximum chip internal power. p i/o max represents the maximum powe r dissipation on output pins where: p i/o max = (v ol i ol ) + ((v dd ? v oh ) i oh ), taking into account the actual v ol / i ol and v oh / i oh of the i/os at low and high level in the application. table 68. thermal characteristics symbol parameter value unit ja thermal resistance junction-ambient bga100 - 7 x 7 mm 59 c/w thermal resistance junction-ambient lqfp100 - 14 x 14 mm / 0.5 mm pitch 46 thermal resistance junction-ambient tfbga64 - 5 x 5 mm 65 thermal resistance junction-ambient lqfp64 - 10 x 10 mm / 0.5 mm pitch 45 thermal resistance junction-ambient lqfp48 - 7 x 7 mm / 0.5 mm pitch 55 thermal resistance junction-ambient ufqfpn48 - 7 x 7 mm / 0.5 mm pitch 16 free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b package characteristics doc id 17659 rev 8 115/121 figure 42. thermal resistance 7.2.1 reference document jesd51-2 integrated circuits thermal test method environment conditions - natural convection (still air). ava ilable from www.jedec.org. pd (mw) temperature(c) 0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 100 75 50 25 0 uqfn48 7x7mm lqfp48 7x7mm lqfp64 10x10mm lqfp100 14x14mm ufbga100 7x7mm .47 'pscjeefobsfb 5+5+nby free datasheet http:///
ordering information scheme stm32l151x6/8/b, stm32l152x6/8/b 116/121 doc id 17659 rev 8 8 ordering information scheme for a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest st sales office. table 69. ordering information scheme example: stm32 l 151 c 8 t 6 d xxx device family stm32 = arm-based 32-bit microcontroller product type l = low power device subfamily 151: devices without lcd 152: devices with lcd pin count c = 48 pins r = 64 pins v = 100 pins flash memory size 6 = 32 kbytes of flash memory 8 = 64 kbytes of flash memory b = 128 kbytes of flash memory package h = bga t = lqfp u = ufqfpn temperature range 6 = industrial temperature range, ?40 to 85 c options no character = v dd range: 1.8 to 3.6 v and bor enabled d = v dd range: 1.65 to 3.6 v and bor disabled packing tr = tape and reel no character = tray or tube free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b revision history doc id 17659 rev 8 117/121 9 revision history on table 70. document revision history date revision changes 02-jul-2010 1 initial release. 01-oct-2010 2 removed 5 v tolerance (ft) from pa3, pb0 and pc3 in ta bl e 9 : stm32l15xxx pin definitions on page 36 updated table 15: embedded reset and power control block characteristics on page 51 updated table 16: embedded internal reference voltage on page 53 added table 53: adc clock frequency on page 90 updated table 54: adc characteristics on page 90 16-dec-2010 3 modified consumptions on page 1 and in section 3.1: low power modes on page 13 led_seg8 removed on pb6 updated section 6: electrical characteristics on page 47 vfqfpn48 replaced by ufqfpn48 25-feb-2011 4 features : updated value of low-power sleep. section 3.3.2: power supply supervisor : updated note. table 9: stm32l15xxx pin definitions : modified main function (after reset) and alternate function for osc_in and osc_out pins; modified footnote 5; added footnote to osc32_in and osc32_out pins; c1 and d1 removed on pd0 and pd1 pins (tfbga64 column). section 3.11: dac (digital-to-analog converter) : updated bullet list. table 11: voltage characteristics on page 49 : updated footnote 3 regarding i inj(pin) . table 12: current characteristics on page 49 : updated footnote 4 regarding positive and negative injection. table 15: embedded reset and power control block characteristics on page 51 : updated typ and max values for t rsttempo (v dd rising, bor enabled). table 17: current consumption in run mode, code with data processing running from flash on page 54 : removed values for hsi clock source (16 mhz), range 3. table 18: current consumption in run mode, code with data processing running from ram on page 55 : removed values for hsi clock source (16 mhz), range 3. table 19: current consumption in sleep mode on page 56 : removed values for hsi clock source (16 mhz), range 3 for both ram and flash; changed units. table 20: current consumption in low power run mode on page 57 : updated parameter and max value of i dd max (lp run). table : on page 58 : updated symbol, parameter, and max value of i dd max (lp sleep). table 18: typical and maximum current consumptions in stop mode : updated values for i dd (stop with rtc) - rtc clocked by lse external clock (32.768 khz), regulator in lp mode, hsi and hse off (no independent watchdog). free datasheet http:///
revision history stm32l151x6/8/b, stm32l152x6/8/b 118/121 doc id 17659 rev 8 25-feb-2011 4 cont?d updated table 23: typical and maximum current consumptions in standby mode on page 61 (i dd (wu from standby) instead of (i dd (wu from stop). table 24: typical and maximum timings in low power modes on page 62 : updated condition for wakeup from stop mode, regulator in run mode; updated max values for wakeup from stop mode, regulator in low power mode; updated max values for t wustdby . table 25: peripheral current consumption on page 63 : updated values for column low power sleep and run; updated flash values; renamed adc1 to adc; updated i dd (lcd) value; updated units; added values for i dd (rtc) and i dd (iwdg) ; updated footnote 1 and 3; added foot note 2 concerning adc. table 26: high-speed external user clock characteristics on page 65 : added min value for t w(hse) /t w(hse) osc_in high or low time; added max value for t r(hse) /t f(hse) osc_in rise or fall time; updated i l for typ and max values. table 27: low-speed external user clock characteristics on page 66 : updated max value for i l . table 28: hse 1-24 mhz oscillat or characteristics on page 68 : renamed i 2 as i hse and updated max value; updated max values for i dd(hse) . table 29: lse oscillator characteristics (f lse = 32.768 khz) on page 69 : updated max value for i lse . table 30: hsi oscillator characteristics on page 71 : updated some min and max values for acc hsi . table 32: msi oscillator characteristics on page 72 : updated parameter, typ, and max values for d volt(msi) . table 35: flash memory and data eeprom characteristics on page 74 : updated typ values for t prog . table 44: i/o ac characteristics on page 81 : updated some max values for 01, 10, and 11; updated min value; updated footnotes. table 55: adc accuracy on page 92 : updated typ values and some of the test conditions for enob, sinad, snr, and thd. table 57: dac characteristics on page 96 : updated footnote 7 and added footnote 8. updated leakage value in figure 26: typical connection diagram using the adc . added figure 27: maximum dynamic current consumption on v ref+ supply pin during adc conversion . added ta bl e 5 6 : r ain max for f adc = 16 mhz on page 94 figure 28: power supply and reference decoupling (v ref+ not connected to v dda ) : replaced all 10 nf capacitors with 100 nf capacitors. figure 29: power supply and reference decoupling (v ref+ connected to v dda ) : replaced 10 nf capacitor with 100 nf capacitor. table 70. document revision history (continued) date revision changes free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b revision history doc id 17659 rev 8 119/121 17-june-2011 5 modified 1st page (low power features) added stm32l15xc6 and stm32l15xr6 devices (32 kbytes of flash memory). modified section 3.6: gpios (general -purpose inputs/outputs) on page 22 modified section 6.3: operating conditions on page 50 modified table 55: adc accuracy on page 92 , table 57: dac characteristics on page 96 and table 59: comparator 1 characteristics on page 99 25-jan-2012 6 features : updated internal multispeed low power rc. table 2: ultra-low-power stm32l15xxx device features and peripheral counts : lcd 4x44 and 8x40 available for both 64- and 128-kbyte devices; two comparators available for all devices. figure 8: stm32l15xcx ufqfpn48 pinout : replaced vfqpn48 by ufqfpn48 as name of package. table 9: stm32l15xxx pin definitions : replaced ph0/ph1 by pc14/pc15. table 10: alternate function input/output : removed event out from ph2 port, afio15 column. table 13: functionalities depending on the operating power supply range : added footnote 1 . table 19: current consumption in sleep mode : updated msi conditions and f hclk . table 20: current consumption in low power run mode : updated some temperature conditions; added footnote 2. table : : updated some temperature conditions and one of the msi clock conditions. table 22: typical and maximum current consumptions in stop mode : updated i dd (wu from stop) parameter. table 23: typical and maximum current consumptions in standby mode : updated i dd (wu from standby) parameter. table 24: typical and maximum timings in low power modes : updated f hclk value for t wusleep_lp ; updated typical value of parameter ?wakeup from stop mode, regulator in run mode?. table 25: peripheral current consumption : replaced gpiof by gpioh. table 33: pll characteristics : updated ?pll output clock? table 35: flash memory and data eeprom characteristics : updated all information for i dd . figure 18: i/o ac characteristics definition : replaced the falling edge ?t r(io)out ? by ?t f(io)out ?. table 47: i 2 c characteristics : amended footnote 2. table 54: adc characteristics : updated f s max value for direct channels, 6-bit sampling rate. table 55: adc accuracy : updated the first, third and fourth f adc test condition. table 58: temperature sensor characteristics : updated typ, min, and max values of the t s_temp parameter. table 70. document revision history (continued) date revision changes free datasheet http:///
revision history stm32l151x6/8/b, stm32l152x6/8/b 120/121 doc id 17659 rev 8 26-oct-2012 7 updated cover page updated section 3.10: adc (analog-to-digital converter) updated table 3: functionalities depending on the operating power supply range , added table 4: cpu frequency range depending on dynamic voltage scaling and table 5: functionalities depending on the working mode (from run/active down to standby) updated table 27: low-speed external user clock characteristics added footnote 2. in table 15: embedded reset and power control block characteristics updated table 22: typical and maximum current consumptions in stop mode and table 23: typical and maximum current consumptions in standby mode updated footnote 4. in table 22: typical and maximum current consumptions in stop mode updated table 44: i/o ac characteristics updated table 47: i 2 c characteristics updated table 49: spi characteristics updated section 6.3.8: memory characteristics updated ?non-robust? table 54: adc characteristics removed the note ?position of 4.7 f capacitor? in section 6.1.6: power supply scheme updated table 65: ufqfpn48 7 x 7 mm, 0.5 mm pitch, package mechanical data updated table 64: lqfp48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data added the resistance of tfbga in table 68: thermal characteristics added figure 42: thermal resistance 07-feb-2013 8 removed ahb1/ahb2 in figure 1: ultra-low-power stm32l15xxx block diagram added iwdg and wwdg rows in table 5: functionalities depending on the working mode (from run/active down to standby) updated i dd (supply current during wakeup time from standby mode) in table 23: typical and maximum current consumptions in standby mode the comment "hse = 16 mhz(2) (pll on for fhclk above 16 mhz)" replaced by "fhse = fhclk up to 16 mhz included, fhse = fhclk/2 above 16 mhz (pll on)(2)? in table 19: current consumption in sleep mode updated stop mode current to 1.2 a in ultra-low-power platform updated entire section 7: package characteristics removed alternate function ?i2c2_smba? for gpio pin ?ph2? in table 9: stm32l15xxx pin definitions updated figure 26: typical connection diagram using the adc and definition of symbol ?r ain ? in table 54: adc characteristics removed first sentence in section : i2c interface characteristics table 70. document revision history (continued) date revision changes free datasheet http:///
stm32l151x6/8/b, stm32l152x6/8/b doc id 17659 rev 8 121/121 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. unless expressly approved in writing by two authorized st representatives, st products are not recommended, authorized or warranted for use in milita ry, air craft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or severe property or environmental damage. st products which are not specified as "automotive grade" may only be used in automotive applications at user?s own risk. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2013 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com free datasheet http:///


▲Up To Search▲   

 
Price & Availability of STM32L151C6

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X